COP 3223 Spring 2010 Section 3 Exam 2 Information

Date: March 31, 2011
Time: 6:00pm - 7:15pm

Place: HEC-125
Sections of the textbook covered: Chapters 5 – 10
Exam Format: Multiple Choice (20 questions 3 points each, Closed Book) and Free Response (4 questions, 10 points each, Open Book) NO CALCULATORS.

Example Questions: Please look at my course archive.

Outline of Exam Material

I. Files
 a. How to declare a file pointer
 b. How to open a file for reading and writing
 c. How to read from and write to a file
 d. How to close a file
II. Arrays
 a. One dimensional
 b. Danger of index out of bounds error
 c. Two dimensional

 d. How to pass arrays as parameters to functions.

III. Functions

 a. How to call a function

b. Pass by value parameters

c. Pass by reference parameters

 d. The difference between actual and formal parameters

e. Function prototypes

f. Functions that return values

g. Void functions
 h. How to design a function and integrate calls to it in a
 program

Files

How to open a file (reading)

FILE* ifp = fopen("input.txt", "r");

How to open a file (writing)

FILE* ofp = fopen("output.txt", "w");

Reading from a file

fscanf(ifp, “%d", &number);

Writing to a file

fprintf(ifp, “Stores: %d\n", &numStores);

How to close a file

fclose(ifp);

Arrays
Arrays allow you to store more than one related variable of the same type. They are great for processing of numerical data. (Also, they are used for C strings.) Here is how you declare an array:

int scores[10];

This array is indexed from 0 to 9. The expression scores[3] accesses array index 3. This expression acts exactly like an integer.

Common Array Errors

1. Out of Bounds error

2. Not initializing all values of an array.

3. Trying to assign an entire array a value such as: scores = 4;

4. Not differentiating between an array index and the value stored in an array at a particular index.

In a two dimensional array, you have two array indexes. Here's an example:

int table[10][20];

The expression table[1][2], access element (1,2) in this array.
Some Array Tasks You Should Be Proficient With

1) Writing a function to initialize all values in an array to a particular value.

2) Printing out the contents of each item in an array.

3) Reading in items from a file into an array.

4) Making calculations with a frequency array (like the character counting example shown in class).
6) Finding the minimum or maximum value in an array.

7) Storing items in a two dimensional array.
8) Printing out the contents of a two dimensional array.

9) Checking some conditions in a two dimensional array (like the tic-tac-toe example).
Functions
Here are some issues to keep straight about functions:

1) Rules for calling a function

2) Rules for writing a function

3) Layout of a program with functions

4) The difference between actual and formal parameters.

Here's a brief summary for each of these:

Rules for calling a function:

1) Must use its name

2) Must use parenthesis

3) Must place ACTUAL parameters inside the parentheses separated by commas

4) Must place the expression where an expression of the return type of the function would be expected.

5) No types are specified

Rules for writing a function

1) Return type must be specified

2) The name of the function must be specified

3) The name and type of each formal parameter must be specified

4) All variables used must either be formal parameters or local variables declared inside the function, (except globals, but we are trying to minimize our use of these!)

5) There's NO need to read in the value of, or prompt the user for the formal parameters - these ALREADY have values.

6) Must return a value/expression of the return type.

7) Mostly like writing a mini-program with a specific task.

Layout of a program with functions

1) First have the #includes

2) Next, the function prototypes

3) Then the #defines

4) main

5) all the functions, one after another

6) Make sure no function is declared in another.

Difference between actual and formal parameters

1) Actual parameters are the ones in the function CALL.

2) Formal parameters are the ones in the function definition.

3) Actual parameters can be any expression of the correct type.

4) Formal parameters must be variables.

5) Actual parameters aren't written with their types in the function call.

6) Formal parameters are written with types in the function header.

7) The actual parameter doesn't really have a name in all cases because its an expression.

8) The name of a formal parameter is completely independent of any variable names in any other functions. They may be the same, but may not be the same as variables in other functions.

A function with just pass-by-value parameters can NOT change the value of a variable in another function.

Finally, make sure you can use the functions in the math library and the random number functions.

Sample Questions
1) Write a function that takes in an integer array called values that is guaranteed to ONLY store integers in between 1 and 10, inclusive and the length of the array, and return the number of distinct values stored in the array from index 0 to index length-1. (For example, if the array of length 8 stored 3, 7, 7, 1, 2, 5, 2, 2, then your function should return 5, since the distinct numbers in the array are 1, 2, 3, 5 and 7.) Fill in the prototype below.

int numDistinct(int values[], int length) {

}
2) Write a function that computes the sum:
[image: image1.wmf]1

2

...

5

3

1

+

+

+

+

+

n

 for the input parameter n, (which is assumed to be a non-negative integer.)
double sumSqrt(int n) {

}
Note: You can test your solutions to both of these functions by writing a main and calling these functions with several test cases you make up.

_1286892843.unknown

