PAGE
2

Spring 2009
Introduction to C - Programming Assignment #2
 Section 2 Due date: Friday, Feb 13, 2009
Objectives
1. Learn how to write and use “if” statements.

2. Learn how to write and use loops (“while”, “for”).

Note: In this assignment, you are required to write two programs. You also have an opportunity to earn some bonus (extra) points.
Problem A: Parallelogram

Given the length, L, and height, H, of a parallelogram, entered from the user, draw a representation of the parallelogram using stars. For example, a parallelogram of length 5 and width 4 can be represented as follows:

In particular, the first row of the design contains L stars starting from the left-most column. Each subsequent row starts with one more space than the previous row followed by L stars. A total of H rows will be printed.

References

Notes: Loops
Input Specification

You are guaranteed that the user will enter in two positive integers for the length and height of the parallelogram. (So there is no need to do any error checking on this program.)

Output Specification

Your output should follow the specification provided above, prefaced with the line below and a blank line:

Here is your parallelogram:

Output Sample

Below are three sample outputs of running the program. Note that these samples are NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given above. In the sample runs below, for clarity and ease of reading, the user input is given in italics while the program output is in bold.

Sample Run #1
Enter the length of your parallelogram.

5

Enter the height of your parallelogram.

4

Here is your parallelogram:

Sample Run #2
Enter the length of your parallelogram.

20

Enter the height of your parallelogram.

2

Here is your parallelogram:

Sample Run #3
Enter the length of your parallelogram.

1

Enter the height of your parallelogram.

6

Here is your parallelogram:

*

 *

 *

 *

 *

 *

Problem B: Number Factorization
Your program will prompt the user for a single positive integer greater than 1. If the user does not enter a valid integer, then your program should continue to reprompt the user for a value until a valid integer is entered. Once the integer is read in, your program will print out the following information about the integer:

1) A list of each of the positive factors of the given integer.

2) The number of factors the given integer has.

3) The sum of the factors of the integer.

4) The product of the factors of the integer.

The key idea which will help solve this problem is attempting to divide the given integer by each integer in between 1 and itself. If a particular division works "perfectly," then the value you have tried is a factor of the given integer. (Note: This description is intentionally vague so that you have to determine the specifics of the method of solution.)

References

Notes: if-else statements, loops, use of %

Input Specification

The value the user enters will be an integer. It will be your job to check to see whether this integer is greater than or equal to two or not. If it is, your program should proceed. If it is not, your program should reprompt the user for a value until one greater than or equal to two is entered. You are guaranteed that the integer entered by the user will be such that the product of the factors of the integer will NOT cause an overflow problem for the int data type. In particular, none of the values your program will have to print out will be more than 231-1.
Output Specification

Your output should follow the specification below:

Here is a list of the positive factors of X:

A B C D

The number of positive factors of X is Y.

The sum of the positive factors of X is Z.
The product of the positive factors of X is W.
Output Samples
Here are three sample outputs of running the program. Note that these samples are NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given above. The user input is given in italics while the program output is in bold.
Sample Run #1
Enter a positive integer greater than one.

-2

Sorry, that input is not valid.

Enter a positive integer greater than one.

-100
Sorry, that input is not valid.

Enter a positive integer greater than one.

9

Here is a list of the positive factors of 9:

1 3 9

The number of positive factors of 9 is 3.

The sum of the positive factors of 9 is 13.

The product of the positive factors of 9 is 27.

Sample Run #2
Enter a positive integer greater than one.

12

Here is a list of the positive factors of 12:

1 2 3 4 6 12

The number of positive factors of 12 is 6.

The sum of the positive factors of 12 is 28.

The product of the positive factors of 12 is 1728.

Sample Run #3
Enter a positive integer greater than one.

100

Here is a list of the positive factors of 100:

1 2 4 5 10 20 25 50 100

The number of positive factors of 100 is 9.

The sum of the positive factors of 100 is 217.

The product of the positive factors of 100 is 1000000000.

Chance for Bonus (Extra) Points
There is a relationship between the integer entered by the user, the number of factors that integer has and the product of those factors. If you can determine this relationship, you will receive five extra points for this assignment. (Note: If you need to specify a power in your explanation, use the ^ symbol. For example, (x+y)^z stands for the quantity of x plus y raised to the z power.)
Deliverables

Two source files:

1) parallel.c, for your solution to problem A

2) factor.c, for your solution to problem B

All files are to be submitted over WebcoursesCT.

If you do the bonus (extra) credit as well, submit a third file (factor.txt) over WebcoursesCT with your explanation in this file. Note that we will not compile and run this file; we will simply read it, i.e., just write in plain English and not C!
Restrictions

Although you may use other compilers, your program must compile and run using gcc or Dev C++. Please use either your Olympus account or Dev C++ to develop your programs. Each of your three programs should include a header comment with the following information: your name, course number, section number, assignment title, and date. Also, make sure you include comments throughout your code describing the major steps in solving the problem.

Grading Details

Your program will be graded upon the following criteria:

1) Your correctness

2) Your programming style and use of white space. Even if you have a plan and your program works perfectly, if your programming style is poor or your use of white space is poor, you could get 10% or 15% deducted from your grade.
3) Compatibility to either gcc (in Olympus) or Dev C++ (in Windows). If your program does not compile in either of these environments, you will get a sizable deduction from your grade.
