Honors Introduction to C Test #2 3/4/2011

This test will involve answering questions about a Grading System. Over the course of the test, you’ll complete a program that reads in information from a file about students grades and calculates various statistics about the grades. A basic framework for your code will be provided to aid in grading. Your program will be reading in input from the file, “grades.in”.

File Format of grades

The first line of the input file contains a single positive integer, n, representing the number of students in the class. It is guaranteed that n ≤ 100. Each of the next n lines will contain grades for one student. Each line will have 11 integers separated with spaces representing each student’s score on the 11 graded assignments in the class. These are homework #1, homework #2, homework #3, homework #4, Friday problem #1, Friday problem #2, Final Project, Exam #1, Exam #2, Exam#3 and the Final Exam. The weighting of each of these components is 5%, 5%, 5%, 5%, 5%, 5%, 10%, 10%, 10%, 10%, and 30%, respectively. Thus, a sample file may look like this:

2

100 90 100 100 100 95 93 87 92 95 91

90 100 80 100 100 80 90 95 85 100 100

In this file, student #1 got a 100, 90, 100 and 100 on his homework assignments, a 100 and 95 on his Friday problems, a 93 on his final project, an 87, 92 and 95 on his three exams, and a 91 on his final exam.

You may assume that each question has a unique correct answer. Thus, assume that each student in the class has a unique average.

1) (5 pts) Write a single statement to replace /* Question 1 */ that reads in the number of students from the file into the variable numStudents.
2) (15 pts) Write a segment of code to replace /* Question 2 */ that reads in all the grade information into the array grades. Note: grades[i][j] stores student i’s grade on assignment j.

3) (20 pts) Write a segment of code to replace /* Question 3 */ that calculates and stores the average grade on each assignment into the array avePerAsgn.

4) (25 pts) Write a segment of code to replace /* Question 4 */ that calculates and stores each student’s average in the array studentAves. To calculate a student’s average, multiply each grade by its relative worth (in between 0 and 1) and add all of these together. For example, if a class had two assignments, where assignment 1 was weighted by .3 and assignment 2 was weighted by .7, the student’s grade would be a1*.3 + a2*.7, where a1 and a2 represent the student’s grades on assignments 1 and 2, respectively.)

5) (20 pts) Write a segment of code to replace /* Question 5 */ that goes through each student and stores the one that has the highest grade that hasn’t yet been printed. printed[j] is 1 if student j has already been printed, and is 0 if student j hasn’t yet been printed. In particular, when this segment is done, best will be the highest average amongst non-printed students and bestStudLeft will be the number (starting at 0) of that student.

6) (10 pts) Write two lines to replace /* Question 6 */ so that the first line prints out the next sorted student’s number and average, rounded to two decimal places and the second line sets this student to be “printed” (so that her data isn’t printed a second time.)

V Basic Framework for the code

#include <stdio.h>
#define MAX_STUDENTS 100

#define NUM_GRADES 11

const double weights[] = {.05, .05, .05, .05, .05, .05, .1, .1, .1, .1, .3};

int main() {

 // Open the input file.

 FILE* ifp = fopen("grades.in", "r");

 int grades[MAX_STUDENTS][NUM_GRADES];

 // Read in the number of students.

 int numStudents;

 /* Question 1: Read in the number of students */

 int i, j;

 /* Question 2: Read in the individual grades into the array grades */
 double avePerAsgn[NUM_GRADES];

 /* Question 3: Calculate and store the average grade for each

 assignment in the array avePerAsgn. */
 double studentAves[MAX_STUDENTS];

 /* Question 4: Calculate and store each student’s average in the

 Array studentAves. */
 // Stores which students we've printed so far – at first no one is

 // printed.
 int printed[MAX_STUDENTS];

 for (i=0; i<numStudents; i++)

 printed[i] = 0;

 /* Print out the students in sorted order, by average, high to low. */
 for (i=0; i<numStudents; i++) {
 double best = 0;

 int bestStudLeft = -1;
 /* Question 5: Loop through each student, and find the one with

 the highest average that hasn’t been printed yet.*/
 /* Question 6: Print this student and their average. Then set this

 student to be printed */
 }

 fclose(ifp);

 return 0;

}

