Honors Introduction to C Test #1 (9/16/2011) Solution


1) (6 pts) Write a single C statement that prints out the following:

//////
\---/-
-\^/--
--“---

Note: The third line starts with one dash and the fourth line starts with two dashes. The third character on the fourth line is a double quote character.

printf(“//////\n\\---/-\n-\\^/--\n--\”---\n”);
// Grading: 1 printf, 1 \n’s, 1 \\’s, 1 \”, 1 for other stuff, 
//          1 for ()’s and “”.

2) (9 pts) What is the output of the following segment of code:

int a = 3, b, c;
b = 2*a + 1;
c = (a + 2*b)%13;
a = (a + b + c)/3;
printf(“a = %d, b = %d, c = %d\n”, a, b, c);


a = 4, b = 7, c = 4 // 3 pts each

3) (10 pts) Complete the program below, so that given the weight of an item in ounces, it converts that weight to pounds and ounces and prints this out. (Note: One pound is equal to 16 ounces.)

#include <stdio.h>

int main() {

    int weight_oz;
    printf(“How many ounces is your item?\n”);
    scanf(“%d”, &weight_oz);


    printf(“Your item weighs %d lbs., %d oz.\n”, weight_oz/16 ,
									    weight_oz%16 );
    return 0;
}

// Grading: 5 pts for each part.

4) (15 pts) The geometric mean of two positive numbers x and y is . The arithmetic mean of two positive numbers x and y is . Write a program that prompts the user to enter two positive numbers, reads them in, and then determines if the absolute value of the difference between the two quantities (the arithmetic mean and geometric mean of the two numbers) is less than 1. If it is, your program should print out “close”. If it is NOT, your program should print out, “NOT close”. (Note: Remember to put all necessary #includes, etc.)

#include <stdio.h>							// 1 pt
#include <math.h>

int main() {
    
    double x, y;							// 1 pt
    printf("Enter two positive real numbers.\n"); // 1 pt
    scanf("%lf%lf", &x, &y);					// 2 pts
    
    double geo_mean = sqrt(x*y);				// 2 pts
    double arith_mean = (x+y)/2;				// 2 pts
    
    if (arith_mean - geo_mean < 1)				// 2 pts
        printf("close\n");					// 1 pt
    else									// 1 pt
        printf("NOT close\n");				// 1 pt
        
    return 0;								// 1 pt
}


5) (12 pts) Give an example of a common bug of a programmer placing an inadvertent semicolon. Describe what the programmer intended and explain what happens differently. Please create a situation where the code still compiles so that the program can execute.

Here is one such code segment:

int age = 12;
if (age >= 21);
    print(“You can have a beer!\n”);

The programmer intended for the print to run only if the variable age was 21 or more. But, the inadvertent semicolon is the statement inside of the if and the printf is OUTSIDE the if and always runs, no matter what.

Grading: 4 pts for the segment, 4 pts for explaining what was intended, 4 pts for explaining what it really does.

6) (20 pts) You are trying to decide whether or not to ride your bike to the mall OR take the bus. When you bike, you bike at a constant rate. But, if you take the bus, you have to wait until the bus arrives. For this problem, you’ll ask the user the following things:

a) What time they are starting their trip?
b) How long it takes to bike to their destination?
c) How long it takes the bus to make it do the destination, once it starts driving?

The bus arrives every half hour, on the half hour. (So, it comes at 9 am, 9:30am, 10am, etc.)

Given this information, your program should decide whether it’s faster to take the bus, faster to bike, or if they both make it to the destination at the same time and print out a message to this effect.

Complete the program below that solves this problem.

#include <stdio.h>

int main() {

    int hr, min, bike_time, bus_time;
    printf(“What time does your trip start?\n”);
    scanf(“%d%d”, &hr, &min);
    printf(“How many minutes does it take to bike?\n”);
    scanf(“%d”, &bike_time);
    printf(“How many minutes does the bus take?\n”);
    scanf(“%d”, &bus_time);

    int wait = (30 - min%30)%30;			// 9 pts
    bus_time = bus_time + wait;			// 3 pts
    
    if (bike_time < bus_time)				// 2 pts
        printf("It's faster to bike.\n");	// 1 pt
    else if (bike_time > bus_time)			// 2 pts 
        printf("It's faster to take the bus.\n"); // 1 pt
    else								// 1 pt
        printf("They take the same time.\n");	// 1 pt





    return 0;
}


7) (10 pts) Imagine three planets rotating around a sun, with each taking a different amount of time, in years. In this program, your goal will be to calculate how often the planets align so that they are in the exact same phase of rotation. To simplify the problem, you will be guaranteed that each cycle time will be an integer number of years and that each of the integers will NOT share a common factor.

#include <stdio.h>

int main() {

    int p1_cyc, p2_cyc, p3_cyc;
    printf(“Enter the cycle times for the three planets?\n”);
    scanf(“%d%d%d”, &p1_cyc, &p2_cyc, &p3_cyc);
 
    int cycle = p1_cyc*p2_cyc*p3_cyc; // mostly all or nothing

    printf(“The planets align every %d years.\n”, cycle );
    return 0;
}

8) (15 pts) Give an example of a situation where integer division and the modulus operator are useful. In order to receive full credit, you need to give an example that hasn’t yet been covered in class or the text book. Significant partial credit will be given for giving an example already covered. Explain your example in detail and why integer division and modulus help solve the problem at hand.

Let’s say you wanted to convert a distance you had swum into the number of laps and leftover yards. An Olympic size pool is 50 meters long, so given a distance in meters, doing integer division by 50 yields the total number of laps swum and mod by 50 yields the number of extra meters swum after the completed laps. Codewise, we have:

int num_meters = 984;
int laps = num_meters/50;
int extra_meters = num_meters%50;


Grading: 10 pts for using an example from class, 15 pts for using an original example, decide partial






9) (5 pts) On which evening does the popular TV show “Saturday Night Live” air? Saturday
