
CNT 4714: Multi-threaded Applications Page 1 Dr. Mark Llewellyn ©

CNT 4714: Enterprise Computing

Summer 2012

Programming Multithreaded Applications in Java

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 407-823-2790

 http://www.cs.ucf.edu/courses/cnt4714/sum2012

CNT 4714: Multi-threaded Applications Page 2 Dr. Mark Llewellyn ©

Introduction to Threads in Java
• In state-of-the art software, a program can be composed of

multiple independent flows of control.

• A flow of control is more commonly referred to as a process or

thread.

• In most of the Java programs that you’ve written (probably)

there was a single flow of control. Most console-based
programs begin with the first statement of the method main()

and work forward to the last statement of the method main().

Flow of control is often temporarily passed to other methods
through invocations, but the control returned to main() after

their completion.

• Programs with a single control flow are known as sequential

processes.

CNT 4714: Multi-threaded Applications Page 3 Dr. Mark Llewellyn ©

Introduction to Threads in Java (cont.)

• Java supports the creation of programs with concurrent flows of

control. These independent flows of control are called threads.

• Threads run within a program and make use of that program’s

resources in their execution. For this reason threads are also

called lightweight processes (LWP).

• The ability to run more than one process simultaneously is an

important characteristic of modern OS such as Linux/Unix and

Windows.

– The following two pages show screen shots of a set of

applications running on my office PC as well as the set of OS and

applications processes required to run those applications.

CNT 4714: Multi-threaded Applications Page 4 Dr. Mark Llewellyn ©

Applications running on

my office PC

CNT 4714: Multi-threaded Applications Page 5 Dr. Mark Llewellyn ©

Some of the processes

running the applications

running on my office PC

CPU working hard!!!

CNT 4714: Multi-threaded Applications Page 6 Dr. Mark Llewellyn ©

Using Threads To Improve Performance

One Thread

Thread 1

Time 

Task 1 Wait for I/O Task 1 Wait for I/O Task 2

Two Threads

Thread 1

Thread 2

Time 

Task 1 Wait for I/O Task 1 Wait for I/O

(Idle) Task 2 (Idle) Task 2

CNT 4714: Multi-threaded Applications Page 7 Dr. Mark Llewellyn ©

Improving Performance With Multithreading

• As the diagram on the previous page implies, applications

that perform several tasks which are not dependent on one

another will benefit the most from multithreading.

• For example, in the previous diagram, Task 2 can only be

overlapped with Task 1 if Task 2 doesn’t depend on the

results of Task 1.

• However, some overlap between the two tasks may still be

possible even if Task 2 depends on the results of Task 1. In

this case the two tasks must communicate so that they can

coordinate their operations.

CNT 4714: Multi-threaded Applications Page 8 Dr. Mark Llewellyn ©

Improving Performance With Multithreading
(cont.)

• Writing multithreaded programs can be tricky and

complicated, particularly when synchronization between

threads is required.

• Although the human mind can perform many functions

concurrently, people find it difficult to jump between parallel

trains of thought.

• To see why multithreading can be difficult to program and

understand, try the experiment shown on the following page.

CNT 4714: Multi-threaded Applications Page 9 Dr. Mark Llewellyn ©

Multithreading Experiment

Page 1

Page 2

Page 3

In this chapter, we

introduce Swing

components that

enable developers to

build functionally rich

user interfaces.

The Swing graphical

interface components

were introduced with the

Java Foundation Classes

(JFC) as a downloadable

extension to the Java 1.1

Platform, then became a

standard extension with

the Java 2 Platform.

Swing provides a more

complete set of GUI

components than the

Abstract Windowing

Toolkit (AWT), including

advanced features such

as a pluggable look and

feel, lightweight

component rendering

and drag-and-drop

capabilities.

The experiment: Try reading the pages above concurrently by

reading a few words from the first page, then a few words from the

second page, then a few words from the third page, then loop

back and read a few words from the first page, and so on. Does

anything make sense? Can you construct a single sentence from

what you have read? Can you remember on which page a

particular word appeared? Can you even remember when you get

back to the first page where you left off?

CNT 4714: Multi-threaded Applications Page 10 Dr. Mark Llewellyn ©

Typical Multithreaded Applications

• Used to improve the performance of applications which

require extensive I/O operations.

• Useful in improving the responsiveness of GUI-based

applications.

• Used when two or more clients need to run server-based

applications simultaneously.

Note: on a single CPU machine, threads don’t actually execute

simultaneously. Part of the JVM known as the thread scheduler time-slices

threads which are runnable (we’ll see more of this in a bit) giving the

illusion of simultaneous execution.

CNT 4714: Multi-threaded Applications Page 11 Dr. Mark Llewellyn ©

A multithreaded program

ends when all of its

individual flows of control

(threads) end.

Multithreaded Program

 {

 statement 1;

 statement 2;

 …

 statement x;

 …

 statement y;

 …

 statement z;

}

Thread B

 {

 B statement 1;

 B statement 2;

 …

 statement r;

}

Thread C

 {

 C statement 1;

 C statement 2;

 …

 C statement t;

}

Thread A

 {

 A statement 1;

 A statement 2;

 …

 A statement m;

 …

 A statement n;

}

This statement starts thread

B. After starting the thread,

the program continues with

the next statement.

This statement starts

thread A. After starting

thread A, the program

continues with the next

statement.

This statement in

thread A starts thread

C. Thread A continues

with next statement.

CNT 4714: Multi-threaded Applications Page 12 Dr. Mark Llewellyn ©

Thread A

Thread B

Thread C

Thread Execution in a Multiprocessor Environment

Thread C

Thread B

Thread A

Thread Execution in a Uniprocessor Environment

CNT 4714: Multi-threaded Applications Page 13 Dr. Mark Llewellyn ©

The Java Thread Class

java.lang.Runnable

java.lang.Thread

+Thread()

+Thread (target: Runnable)

+run(): void

+start(): void

+interrupt(): void

+isAlive(): boolean

+setPriority(p: int): void

+join(): void

+sleep(millis: long): void

+yield(): void

+isInterrupted(): boolean

+currentThread(): Thread

Creates a default thread.

Invoked by the JVM to execute the thread. You must override this

method and provide the code you want your thread to execute in your

thread class. This method is never directly invoked by a the runnable

object in a program, although it is an instance method of a runnable

object.

Starts the thread that causes the run() method to be invoked by the JVM

Interrupts this thread. If the thread is blocked, it is ready to run again.

Tests if the thread is currently running.

Sets priority p (ranging from 1 to 10) for this thread.

Waits for this thread to finish.

Puts the runnable object to sleep for a specified time in milliseconds.

Creates a new thread to run the target object

Causes this thread to temporarily pause and allow other threads to execute

Tests if the current thread has been interrupted

Returns a reference to the currently executing thread object.

CNT 4714: Multi-threaded Applications Page 14 Dr. Mark Llewellyn ©

Java Classes and Threads

• Java has several classes that support the creation and

scheduling of threads.

• The two basic ways of creating threads in Java are:

– 1) extending the Thread class

– or 2) implementing the Runnable interface.

 (Both are found in package java.lang. Thread actually

implements Runnable.)

• We’ll also look at a slightly different technique for

creating and scheduling threads later using the

java.util.Timer and java.util.TimerTask

classes.

CNT 4714: Multi-threaded Applications Page 15 Dr. Mark Llewellyn ©

Java Classes and Threads (cont.)

• The following two simple examples, illustrate the differences in

creating threads using these two different techniques.

• The example is simple, three threads are created, one that prints

the character ‘A’ twenty times, one that prints the character ‘B’

twenty times, and a third thread that prints the integer numbers

from 1 to 20.

• The first program is an example of extending the thread class.
The second program is an example of using the Runnable

interface. This latter technique is the more common and

preferred technique. While we will see more examples of this

technique later, this simple example will illustrate the

difference in the two techniques.

CNT 4714: Multi-threaded Applications Page 16 Dr. Mark Llewellyn ©

//Custom Thread Class

Public class CustomThread extends Thread

{ …

 public CustomThread(…)

 {

 …

 }

 //Override the run method in Thread

 //Tell system how to run custom thread

 public void run()

 {

 …

 }

 …

} //end CustomThread Class

//Client Class to utilize CustomThread

Public class Client

{ …

 public void someMethod()

 {

 …

 //create a thread

 CustomThread thread1 =

 new CustomThread(…);

 //start a thread

 thread1.start();

 …

 //create another thread

 CustomThread thread2 =

 new CustomThread(…);

 //start another thread

 thread2.start();

 …

 }

…

} //end Client Class

Template for defining a thread class by

extending the Thread class. Threads

thread1 and thread2 are runnable objects

created from the CustomThread class.

The start method informs the system that

the thread is ready to run.

CNT 4714: Multi-threaded Applications Page 17 Dr. Mark Llewellyn ©

//Custom Thread Class

Public class CustomThread implements Runnable

{ …

 public CustomThread(…)

 {

 …

 }

 //Implement the run method in Runnable

 //Tell system how to run custom thread

 public void run()

 {

 …

 }

 …

} //end CustomThread Class

//Client Class to utilize CustomThread

Public class Client

{ …

 public void someMethod()

 {

 …

 //create an instance of CustomThread

 CustomThread custhread =

 new CustomThread(…);

 …

 //create a thread

 Thread thread =

 newThread(custhread);

 …

 //start a thread

 thread.start();

 …

 }

…

} //end Client Class

Template for defining a thread class by

implementing the Runnable interface. To start

a new thread with the Runnable interface, you

must first create an instance of the class that

implements the Runnable interface (in this

case custhread), then use the Thread class

constructor to construct a thread.

CNT 4714: Multi-threaded Applications Page 18 Dr. Mark Llewellyn ©

Start thread execution

after a 0 msec delay

(i.e., immediately)

//Class to generate threads by extending the Thread class

public class TestThread {

 // Main method

 public static void main(String[] args) {

 // Create threads

 PrintChar printA = new PrintChar('a', 20);

 PrintChar printB = new PrintChar('b', 20);

 PrintNum print20 = new PrintNum(20);

 // Start threads

 print20.start();

 printA.start();

 printB.start();

 }

}

// The thread class for printing a specified character a specified number of times

class PrintChar extends Thread {

 private char charToPrint; // The character to print

 private int times; // The times to repeat

 // Construct a thread with specified character and number of times to print the character

 public PrintChar(char c, int t) {

 charToPrint = c;

 times = t;

 }

Extension of the Thread

class

CNT 4714: Multi-threaded Applications Page 19 Dr. Mark Llewellyn ©

// Override the run() method to tell the system what the thread will do

 public void run() {

 for (int i = 0; i < times; i++)

 System.out.print(charToPrint);

 }

}

// The thread class for printing number from 1 to n for a given n

class PrintNum extends Thread {

 private int lastNum;

 // Construct a thread for print 1, 2, ... i

 public PrintNum(int n) {

 lastNum = n;

 }

 // Tell the thread how to run

 public void run() {

 for (int i = 1; i <= lastNum; i++)

 System.out.print(" " + i);

 }

} //end class TestThread

Overriding the run method

in the Thread class

CNT 4714: Multi-threaded Applications Page 20 Dr. Mark Llewellyn ©

Sample executions of class TestThread. Notice that the

output from the three threads is interleaved. Also notice

that the output sequence is not repeatable.

CNT 4714: Multi-threaded Applications Page 21 Dr. Mark Llewellyn ©

Main method simple

creates a new

Runnable object and

terminates.

//Class to generate threads by implementing the Runnable interface

public class TestRunnable {

 // Create threads

 Thread printA = new Thread(new PrintChar('a', 20));

 Thread printB = new Thread(new PrintChar('b', 20));

 Thread print20 = new Thread(new PrintNum(20));

 public static void main(String[] args) {

 new TestRunnable();

 }

 public TestRunnable() {

 // Start threads

 print20.start();

 printA.start();

 printB.start();

 }

 // The thread class for printing a specified character in specified times

 class PrintChar implements Runnable {

 private char charToPrint; // The character to print

 private int times; // The times to repeat

 // Construct a thread with specified character and number of times to print the character

 public PrintChar(char c, int t) {

 charToPrint = c;

 times = t;

 }

Runnable object starts

thread execution.

Implements the Runnable

interface.

CNT 4714: Multi-threaded Applications Page 22 Dr. Mark Llewellyn ©

// Override the run() method to tell the system what the thread will do

 public void run() {

 for (int i = 0; i < times; i++)

 System.out.print(charToPrint);

 }

 }

 // The thread class for printing number from 1 to n for a given n

 class PrintNum implements Runnable {

 private int lastNum;

 // Construct a thread for print 1, 2, ... i

 public PrintNum(int n) {

 lastNum = n;

 }

 // Tell the thread how to run

 public void run() {

 for (int i = 1; i <= lastNum; i++)

 System.out.print(" " + i);

 }

 }

} //end class TestRunnable

Override the run method for

both types of threads.

CNT 4714: Multi-threaded Applications Page 23 Dr. Mark Llewellyn ©

Sample executions of class TestRunnable. Notice that

the output from the three threads is interleaved. Also

notice that the output sequence is not repeatable.

CNT 4714: Multi-threaded Applications Page 24 Dr. Mark Llewellyn ©

Some Modifications to the Example

• To illustrate some of the methods in the Thread class, you

might want to try a few modifications to the TestRunnable

class in the previous example. Notice how the modifications

change the order of the numbers and characters in the output.

• Use the yield() method to temporarily release time for other

threads to execute. Modify the code in the run method in

PrintNum class to the following:

– Now every time a number is printed, the print20 thread yields, so

each number will be followed by some characters.

public void run() {

 for (int i = 1; i <= lastNum; i++) {

 System.out.print(" " + i);

 Thread.yield();

 }

CNT 4714: Multi-threaded Applications Page 25 Dr. Mark Llewellyn ©

Some Modifications to the Example (cont.)

• The sleep(long millis) method puts the thread to sleep

for the specified time in milliseconds. Modify the code in the

run method in PrintNum class to the following:

– Now every time a number greater than 10 is printed, the print20

thread is put to sleep for 2 milliseconds, so all the characters will

complete printing before the last integer is printed.

public void run() {

 for (int i = 1; i <= lastNum; i++) {

 System.out.print(" " + i);

 try {

 if (i >= 10) Thread.sleep(2);

 }

 catch (InterruptedException ex) { }

 }

}

CNT 4714: Multi-threaded Applications Page 26 Dr. Mark Llewellyn ©

Some Modifications to the Example (cont.)

• You can use the join() method to force one thread to wait for

another thread to finish. Modify the code in the run method in

PrintNum class to the following:

– Now the numbers greater than 10 are printed only after thread

printA is finished.

public void run() {

 for (int i = 1; i <= lastNum; i++) {

 System.out.print(" " + i);

 try {

 if (i == 10) printA.join();

 }

 catch (InterruptedException ex) { }

 }

}

CNT 4714: Multi-threaded Applications Page 27 Dr. Mark Llewellyn ©

Other Java Classes and Threads

• We noted earlier that Java has several different classes that

support the creation and scheduling of threads. Classes

java.util.Timer and java.util.TimerTask are

generally the easiest to use. They allow a thread to be created

and run either at a time relative to the current time or at some

specific time.

• We’ll look at these classes briefly and give a couple of

examples.

CNT 4714: Multi-threaded Applications Page 28 Dr. Mark Llewellyn ©

Java Classes and Threads (cont.)

• Class Timer overloads the schedule() method three times

for creating threads after either some specified delay or at some

specific time.

– public void schedule(TimerTask task, long m);

• Runs task.run() after waiting m milliseconds.

– public void schedule(TimerTask task, long m, long n);

• Runs task.run() after waiting m milliseconds, then repeats it every n

milliseconds.

– Public void schedule(TimerTask task, Date t);

• Runs task.run() at the time indicated by date t.

• By extending the abstract class TimerTask and specifying

a definition for its abstract method run(), an application-

specific thread can be created.

CNT 4714: Multi-threaded Applications Page 29 Dr. Mark Llewellyn ©

Example – Thread Execution After a Delay

• The code listing on the following page gives a very simple

example of executing a thread after a delay (using the first

schedule() method from the previous page).

• The thread in this example, simply prints a character 10

times and then ends.

• Look at the code and follow the flow, then execute it on your

machine (code appears on the course webpage).

CNT 4714: Multi-threaded Applications Page 30 Dr. Mark Llewellyn ©

//displays characters in separate threads
import java.util.*;
public class DisplayCharSequence extends TimerTask {
 private char displayChar;
 Timer timer;

 //constructor for character displayer
 public DisplayCharSequence(char c){
 displayChar = c;
 timer = new Timer();
 timer.schedule(this, 0);
 }

 //display the occurrences of the character
 public void run() {
 for (int i = 0; i < 10; ++i) {
 System.out.print(displayChar);
 }
 timer.cancel();
 }

 //main
 public static void main (String[] args) {
 DisplayCharSequence s1 = new DisplayCharSequence(‘M’);
 DisplayCharSequence s2 = new DisplayCharSequence(‘A’);
 DisplayCharSequence s3 = new DisplayCharSequence(‘R’);
 DisplayCharSequence s4 = new DisplayCharSequence(‘K’);
 }
}

Start thread execution

after a 0 msec delay

(i.e., immediately)

A subclass implementation of

TimerTask’s abstract method

run() has typically two parts –

first part is application specific

(what the thread is supposed to

do) and the second part ends

the thread.

CNT 4714: Multi-threaded Applications Page 31 Dr. Mark Llewellyn ©

It worked right!!!

CNT 4714: Multi-threaded Applications Page 32 Dr. Mark Llewellyn ©

Example – Repeated Thread Execution

• This next example demonstrates how to schedule a thread to

run multiple times. Basically, the thread updates a GUI-

based clock every second.

Sample

GUI

CNT 4714: Multi-threaded Applications Page 33 Dr. Mark Llewellyn ©

//displays current time – threaded execution

import java.util.*;

import javax.swing.JFrame;

import java.text.*;

import java.awt.*;

public class BasicClock extends TimerTask {

 final static long MILLISECONDS_PER_SECOND = 1000;

 private JFrame window = new JFrame(“Basic Clock”);

 private Timer timer = new Timer();

 private String clockFace = “”;

 //constructor for clock

 public BasicClock(){

 //set up GUI

 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 window.setSize(200,60);

 Container c = window.getContentPane();

 c.setBackground(Color.WHITE);

 window.setVisible(true);

 //update GUI every second beginning immediately

 timer.schedule(this,0,1*MILLISECONDS_PER_SECOND);

 }

Two tasks: (1) configure the GUI

and (2) schedule the thread to

update the GUI-clock every

second.

This form of the overloaded schedule() method is

the second one shown on page 28 which uses a

delay and a repetition factor.

CNT 4714: Multi-threaded Applications Page 34 Dr. Mark Llewellyn ©

 //display updated clock

 public void run(){

 Date time = new Date();

 Graphics g = window.getContentPane().getGraphics();

 g.setColor(Color.WHITE);

 g.drawString(clockFace, 10, 20);

 clockFace = time.toString();

 g.setColor(Color.BLUE);

 g.drawString(clockFace,10, 20);

}

 //main

 public static void main (String[] args) {

 BasicClock clock = new BasicClock();

 }

}

Date() returns current time to the

millisecond. toString() method returns a

textual representation of the date in the

form: w c d h:m:s z y

Where: w: 3 char-rep of day of week

 c: 3 char-rep of month

 d: 2 digit-rep of day of month

 h: 2 digit-rep of hour

 m: 2 digit-rep of minute within hr

 s: 2 digit-rep of second within min

 z: 3 char-rep of time zone

 y: 4 char-rep of year

CNT 4714: Multi-threaded Applications Page 35 Dr. Mark Llewellyn ©

!! CAUTION !!

• Java provides two different standard classes named Timer. The class

we’ve used in the past two examples is part of the util API. There is

also a Timer class that is part of the swing API.

• In our previous example, we needed to make sure that we didn’t
inadvertently bring both Timer classes into our program which would

have created an ambiguity about which Timer class was being used.

• Although you cannot import both Timer classes into a single Java

source file, you can use both Timer classes in the same Java source file.

An import statement exists to allow a syntactic shorthand when using

Java resources; i.e., an import statement is not required to make use of

Java resources. Using fully qualified class names will remove the

ambiguity.

– java.util.Time t1 = new java.util.Timer();

– javax.swing.Timer t2 = new javax swing.Timer();

CNT 4714: Multi-threaded Applications Page 36 Dr. Mark Llewellyn ©

Example – Thread Execution At Specific Time

• This next example demonstrates how to schedule a thread to

run at a specific time. This example will create a couple of

threads to remind you of impending appointments.

Basically, the thread pops-up a window to remind you of the

appointment.

This window pops

up 2 minutes

later

Sample

DisplayAlert

Window

CNT 4714: Multi-threaded Applications Page 37 Dr. Mark Llewellyn ©

Third version of

schedule() method as

shown on page 28.

CNT 4714: Multi-threaded Applications Page 38 Dr. Mark Llewellyn ©

Sleeping

• In the three examples so far, all the threads performed some

action. Threads are also used to pause a program for some

period of time.

• Standard class java.lang.Thread has a class method

sleep() for pausing the flow of control.

public static void sleep (long n) throws InterruptedException

• For example, the following code segment will twice get and

display the current time, but the time acquisitions are

separated by 10 seconds by putting the process to sleep.

CNT 4714: Multi-threaded Applications Page 39 Dr. Mark Llewellyn ©

Put the process to sleep

for 10 seconds.

CNT 4714: Multi-threaded Applications Page 40 Dr. Mark Llewellyn ©

Notice that the process has

slept for exactly 10 seconds

in each case.

CNT 4714: Multi-threaded Applications Page 41 Dr. Mark Llewellyn ©

Life Cycle of a Thread

• At any given point in time, a thread is said to be in one of several

thread states as illustrated in the diagram below.

NEW

Terminated

Runnable

Blocked

Waiting

wait()

notify() or

notifyAll()

interrupt()

signal start()

run()

terminates

Non-executing

threads

CNT 4714: Multi-threaded Applications Page 42 Dr. Mark Llewellyn ©

Life Cycle of a Thread (cont.)

NEW

Terminated

Runnable

Blocked

Waiting

The thread constructor is called

to create a new instance of the

Thread class.

1

CNT 4714: Multi-threaded Applications Page 43 Dr. Mark Llewellyn ©

Life Cycle of a Thread (cont.)

NEW

Terminated

Runnable

Blocked

Waiting

start()

The start() method is

invoked to designate the

thread as runnable. 2

CNT 4714: Multi-threaded Applications Page 44 Dr. Mark Llewellyn ©

Life Cycle of a Thread (cont.)

NEW

Terminated

Runnable

Blocked

Waiting

3

The Java thread

scheduler runs the

thread as the

processor becomes

available

CNT 4714: Multi-threaded Applications Page 45 Dr. Mark Llewellyn ©

Life Cycle of a Thread (cont.)

NEW

Terminated

Runnable

Blocked

Waiting

5 If the thread invokes the wait()

method, it is put into the waiting

state and will remain there until

another thread invokes the notify()

or notifyAll() method.

CNT 4714: Multi-threaded Applications Page 46 Dr. Mark Llewellyn ©

Life Cycle of a Thread (cont.)

NEW

Terminated

Runnable

Blocked

Waiting

6
The thread ends when the

run method terminates.

CNT 4714: Multi-threaded Applications Page 47 Dr. Mark Llewellyn ©

Life Cycle of a Thread (cont.)

NEW

Terminated

Runnable

Blocked

Waiting

4

The thread can become

blocked for various reasons

and will not run again until it

is returned to the runnable

state.

CNT 4714: Multi-threaded Applications Page 48 Dr. Mark Llewellyn ©

Summary of States In The Life Cycle of a Thread

State Description

New
The thread has been created (its constructor has been invoked), but not

yet started.

Runnable

The thread’s start() method has been invoked and the thread is available

to be run by the thread scheduler. A thread in the Runnable state may

actually be running, or it may be waiting in the thread queue for an

opportunity to run.

Blocked

The thread has been temporarily removed from the Runnable state so

that it cannot be executed. This can happen if the thread’s sleep()

method is invoked, if the thread is waiting on I/O, or if the thread requests

a lock on an object that is already locked. When the condition changes,

the thread will be returned to the Runnable state.

Waiting
The thread has invoked its wait() method so that other threads can

access an object. The thread will remain in the Waiting state until

another thread invokes the notify() or notifyAll() method.

Terminated The thread’s run() method has ended.

CNT 4714: Multi-threaded Applications Page 49 Dr. Mark Llewellyn ©

Life Cycle of a Thread – A Slightly Different View

• At any given point in time, a thread is said to be in one of

several thread states as illustrated in the diagram below.

terminated

running

ready new

blocked

Thread

created

start()

Wait for target

to finish
Wait for timeout

Wait to be

notified

sleep()

wait()

interrupt() target

finished

interrupt()

notify() or

notifyAll()

join()

timeout

CNT 4714: Multi-threaded Applications Page 50 Dr. Mark Llewellyn ©

Life Cycle of a Thread (cont.)

• A new thread begins its life cycles in the new state. It remains in this
state until the program starts the thread, which places the thread in the
ready state (also commonly referred to as the runnable state). A
thread in this state is considered to be executing its task, although at
any given moment it may not be actually executing.

• When a ready thread begins execution, it enters the running state. A
running thread may return to the ready state if its CPU time slice
expires or its yield() method is invoked.

• A thread can enter the blocked state (i.e., it becomes inactive) for
several reasons. It may have invoked the join(), sleep(), or
wait() method, or some other thread may have invoked these
methods. It may be waiting for an I/O operation to complete.

• A blocked thread can be reactivated when the action which
inactivated it is reversed. For example, if a thread has been put to
sleep and the sleep time has expired, the thread is reactivated and
enters the ready state.

CNT 4714: Multi-threaded Applications Page 51 Dr. Mark Llewellyn ©

Life Cycle of a Thread (cont.)

• A thread is terminated if it completes the execution of its
run() method.

• The isAlive() method is used to query the state of a thread.
This method returns true it a thread is in the ready, blocked, or
running state; it returns false if a thread is new and has not
started or if it is finished.

• The interrupt() method interrupts a thread in the
following way: If a thread is currently in the ready or running
state, its interrupted flag is set; if a thread is currently blocked,
it is awakened and enters the ready state, and a
java.lang.InterruptedException is thrown.

• Threads typically sleep when they momentarily do not have
work to perform. Example, a word processor may contain a
thread that periodically writes a copy of the current document
to disk for recovery purposes.

CNT 4714: Multi-threaded Applications Page 52 Dr. Mark Llewellyn ©

Life Cycle of a Thread (cont.)

• A runnable thread enters the terminated state when it completes

its task or otherwise terminates (perhaps due to an error

condition).

• At the OS level, Java’s runnable state actually encompasses two

separate states. The OS hides these two states from the JVM,

which sees only the runnable state.

– When a thread first transitions to the runnable state from the new

state, the thread is in the ready state. A ready thread enters the

running state (i.e., begins execution) when the OS assigns the thread

to a processor (this is called dispatching the thread). In most OS,

each thread is given a small amount of processor time – called a

quantum or time slice – with which to perform its task. When the

thread’s quantum expires, the thread returns to the ready state and the

OS assigns another thread to the processor. Transitions between

these states are handled solely by the OS.

CNT 4714: Multi-threaded Applications Page 53 Dr. Mark Llewellyn ©

Thread Priorities

• Every Java thread has a priority that helps the OS determine
the order in which threads are scheduled.

• Java priorities are in the range between MIN_PRIORITY (a
constant of 1) and MAX_PRIORITY (a constant of 10).

• Threads with a higher priority are more important to a
program and should be allocated processor time before
lower-priority threads. However, thread priorities cannot
guarantee the order in which threads execute.

• By default, every thread is given priority
NORM_PRIORITY (a constant of 5). Each new thread
inherits the priority of the thread that created it.

CNT 4714: Multi-threaded Applications Page 54 Dr. Mark Llewellyn ©

Priority 9

Priority 8

Priority 7

Priority 10

Priority 6

Priority 5

Priority 4

Priority 3

Priority 2

Priority 1

A B

D

C

E F

G

H I

J K

Ready threads

Thread.MIN_PRIORITY

Thread.MAX_PRIORITY

Thread.NORM_PRIORITY

Thread Priority Scheduling

CNT 4714: Multi-threaded Applications Page 55 Dr. Mark Llewellyn ©

Creating and Executing Threads
• In J2SE 5.0 and above, the preferred means of creating a

multithreaded application is to implement the Runnable

interface (package java.lang) (see earlier examples also)

and use built-in methods and classes to create Threads

that execute the Runnable interface.

• The Runnable interface declares a single method named

run(), Runnables are executed by an object of a class

that implements the Executor interface (package

java.util.concurrent). This interface declares a

single method named execute.

• An Executor object typically creates and manages a group

of threads called a thread pool. These threads execute the

Runnable objects passed to the execute method.

CNT 4714: Multi-threaded Applications Page 56 Dr. Mark Llewellyn ©

Creating and Executing Threads (cont.)

• The Executor assigns each Runnable to one of the

available threads in the thread pool. If there are no available

threads in the thread pool, the Executor creates a new thread

or waits for a thread to become available and assigns that thread
the Runnable that was passed to method execute.

• Depending on the Executor type, there may be a limit to the

number of threads that can be created. Interface
ExecutorService (package java.util.concurrent) is a

subinterface of Executor that declares a number of other

methods for managing the life cycle of the Executor. An object

that implements this ExecutorService interface can be created

using static methods declared in class Executors (package

java.util.concurrent). The next examples illustrates

these.

CNT 4714: Multi-threaded Applications Page 57 Dr. Mark Llewellyn ©

Multithreading Example – Sleeping/Waking Threads

// PrintTask class sleeps for a random time from 0 to 5 seconds

import java.util.Random;

public class PrintTask implements Runnable

{

 private int sleepTime; // random sleep time for thread

 private String threadName; // name of thread

 private static Random generator = new Random();

 // assign name to thread

 public PrintTask(String name)

 {

 threadName = name; // set name of thread

 // pick random sleep time between 0 and 5 seconds

 sleepTime = generator.nextInt(5000);

 } // end PrintTask constructor

CNT 4714: Multi-threaded Applications Page 58 Dr. Mark Llewellyn ©

Multithreading Example – Sleeping/Waking Threads

// method run is the code to be executed by new thread

 public void run()

 {

 try // put thread to sleep for sleepTime amount of time
{

 System.out.printf("%s going to sleep for %d milliseconds.\n",

 threadName, sleepTime);

 Thread.sleep(sleepTime); // put thread to sleep

 } // end try

 // if thread interrupted while sleeping, print stack trace

 catch (InterruptedException exception)

 {

 exception.printStackTrace();

 } // end catch

 // print thread name

 System.out.printf("%s done sleeping\n", threadName);

 } // end method run

} // end class PrintTask

CNT 4714: Multi-threaded Applications Page 59 Dr. Mark Llewellyn ©

Multithreading Example – Create Threads and Execute

// Multiple threads printing at different intervals.

import java.util.concurrent.Executors;

import java.util.concurrent.ExecutorService;

public class RunnableTester

{

 public static void main(String[] args) {

 // create and name each runnable

 PrintTask task1 = new PrintTask("thread1");

 PrintTask task2 = new PrintTask("thread2");

 PrintTask task3 = new PrintTask("thread3");

 System.out.println("Starting threads");

 // create ExecutorService to manage threads

 ExecutorService threadExecutor = Executors.newCachedThreadPool();

 // start threads and place in runnable state

 threadExecutor.execute(task1); // start task1

 threadExecutor.execute(task2); // start task2

 threadExecutor.execute(task3); // start task3

 threadExecutor.shutdown(); // shutdown worker threads

 System.out.println("Threads started, main ends\n");

 } // end main

} // end class RunnableTester

CNT 4714: Multi-threaded Applications Page 60 Dr. Mark Llewellyn ©

Example Executions of

RunnableTester.java

CNT 4714: Multi-threaded Applications Page 61 Dr. Mark Llewellyn ©

More Sophisticated Threading
• All of the example applications up to this point involved

threads which were unsynchronized. None of the threads

actually needed to communicate with one another and they

did not require access to a shared object.

• The threads we’ve seen so far fall into the category of

unrelated threads. These are threads which do different tasks

and do not interact with one another.

• A slightly more complex form of threading involves threads

which are related but unsynchronized. In this case, multiple

threads operate on different pieces of the same data structure.

An example of this type of threading is illustrated on the next

page with a threaded program to determine if a number is

prime.

CNT 4714: Multi-threaded Applications Page 62 Dr. Mark Llewellyn ©

//class for threaded prime number testing

//no inheritance issues so using the simple form of thread creation

class testRange extends Thread {

 static long possPrime;

 long from, to; //test range for a thread

 //constructor

 //record the number to be tested and the range to be tried

 testRange(int argFrom, long argpossPrime) {

 possPrime = argpossPrime;

 if (argFrom ==0) from = 2; else from = argFrom;

 to=argFrom+99;

 }

 //implementation of run

 public void run() {

 for (long i=from; i <= to && i<possPrime; i++) {

 if (possPrime % i == 0) {

 //i divides possPrime exactly

 System.out.println("factor " + i + " found by thread " + getName());

 break; //exit for loop immediately

 }

 yield(); //suspend thread

 }

 }

}

Prime Number Tester Class

CNT 4714: Multi-threaded Applications Page 63 Dr. Mark Llewellyn ©

//driver class to demonstrate threaded prime number tester

public class testPrime {

 public static void main (String s[]) {

 //number to be tested for primality is entered as a command line argument

 //examples: 5557 is prime, 6841 is prime, 6842 is not prime

 long possPrime = Long.parseLong(s[0]);

 int centuries = (int) (possPrime/100) + 1;

 for (int i=0; i<centuries;i++) {

 new testRange(i*100, possPrime).start();

 }

 }

}

Driver Class for Prime

Number Tester

• This is an example of related but unsynchronized threads. In this case the

threads are related since they are each working on a piece of the same

data, but approach it from a slightly different perspective. However, they

are unsynchronized since they do not share information.

CNT 4714: Multi-threaded Applications Page 64 Dr. Mark Llewellyn ©

2048 and 6842 are not

prime – their factors are

shown by the thread

which discovered the

factor.

5557 is prime so no

thread will find a factor

CNT 4714: Multi-threaded Applications Page 65 Dr. Mark Llewellyn ©

 Related and Synchronized Threads
• The most complicated type of threaded application involves

threads which interact with each other. These are related

synchronized threads (also referred to as cooperating threads).

• Without synchronization when multiple threads share an object and

that object is modified by one or more of the threads, indeterminate

results may occur. This is known as a data race or race condition.

• The following example illustrates a race condition. In this

example, we simulate a steam boiler and the reading of its

pressure. The program starts 10 unsynchronized threads which

each read the pressure of the boiler and if it is found to be below

the safe limit, the pressure in the boiler is increased by 15psi. If the

pressure is found to already be above the safe limit, the pressure is

not increased. Looking at the results you can clearly see the

problem with this approach.

CNT 4714: Multi-threaded Applications Page 66 Dr. Mark Llewellyn ©

Class to Simulate a Steam Boiler – Pressure Gauge

CNT 4714: Multi-threaded Applications Page 67 Dr. Mark Llewellyn ©

Thread Class to Read Steam Boiler Pressure Gauge and

Increase the Pressure if Within Range

CNT 4714: Multi-threaded Applications Page 68 Dr. Mark Llewellyn ©

This is what caused

the race condition

to occur.

Output From Execution

Illustrating the Race Condition

CNT 4714: Multi-threaded Applications Page 69 Dr. Mark Llewellyn ©

See. . ., I told you

so!

Output From Execution

Illustrating No Race Condition

CNT 4714: Multi-threaded Applications Page 70 Dr. Mark Llewellyn ©

 Interesting Note on Race Conditions
• You may remember the large North American power blackout that occurred on August

14, 2003. Roughly 50 million people lost electrical power in a region stretching from
Michigan through Canada to New York City. It took three days to restore service to
some areas.

• See http://en.wikipedia.org/wiki/Northeast_blackout_of_2003 (scroll down to computer
failure)

• There were several factors that contributed to the blackout, but the official report
highlights the failure of the alarm monitoring software which was written in C++ by GE
Energy. The software failure wrongly led operators to believe that all was well, and
precluded them from rebalancing the power load before the blackout cascaded out of
control.

• Because the consequences of the software failure were so severe, the bug was analyzed
exhaustively. The root cause was finally identified by artificially introducing delays in
the code (just like we did in the previous example). There were two threads that wrote to
a common data structure, and through a coding error, they could both update it
simultaneously. It was a classic race condition, and eventually the program “lost the
race”, leaving the structure in an inconsistent state. That in turn caused the alarm event
handler to spin in an infinite loop, instead of raising the alarm. The largest power failure
in the history of the US and Canada was caused by a race condition bug in some threaded
C++ code. Java is equally vulnerable to this kind of bug.

http://en.wikipedia.org/wiki/Northeast_blackout_of_2003
http://en.wikipedia.org/wiki/Northeast_blackout_of_2003
http://en.wikipedia.org/wiki/Northeast_blackout_of_2003
http://en.wikipedia.org/wiki/Northeast_blackout_of_2003
http://en.wikipedia.org/wiki/Northeast_blackout_of_2003
http://en.wikipedia.org/wiki/Northeast_blackout_of_2003
http://en.wikipedia.org/wiki/Northeast_blackout_of_2003
http://en.wikipedia.org/wiki/Northeast_blackout_of_2003

CNT 4714: Multi-threaded Applications Page 71 Dr. Mark Llewellyn ©

 The Therac-25 Accidents
• Starting in 1976, the Therac-25 treatment system, built by Atomic Energy of

Canada Limited (AECL) and COR MeV of France, was used to fight cancer by
providing radiation to a specific part of the body in the hope of destroying
tumors.

• See http://en.wikipedia.org/wiki/Therac-25 (See last line of the Problem
description.)

• Six known Therac-25 accidents have been documented, all involved massive
overdoses (100x normal dose) of radiation and three resulted in the death of the
patient, serious long-term injury and disfigurement occurred in the other cases.
Patients received an estimated 17,000 to 25,000 rads to very small body areas.
By comparison, doses of 1000 rads can be fatal if delivered to the whole body.

• Analysis determined that the primary cause of the overdoses was faulty
software. The software was written in assembly language and was developed
and tested by the same person. The software included a scheduler and
concurrency in its design. When the system was first built, operators
complained that it took too long to enter the treatment plan into the computer.
As a result, the software was modified to allow operators to quickly enter
treatment data by simply pressing the Enter key when an input value did not
require changing.

http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Therac-25

CNT 4714: Multi-threaded Applications Page 72 Dr. Mark Llewellyn ©

 The Therac-25 Accidents (cont.)

• This modification created a synchronization error (a race condition developed)
between the code that read the data entered by the operator and the code
controlling the machine. As a result, the actions of the machine would lag
behind the commands the operator entered. The machine appeared to
administer the dose entered by the operator, but it fact had an improper setting
that focused radiation at full power to a tiny spot on the body.

• The race condition was subsequently found to occur only when a certain non-
typical keystroke sequence was entered (an “X” to select a 25MeV photon
followed by “cursor-up” ,”E” to correctly set the 25MeV Electron mode, then
“Enter”), since this sequence of keystrokes did not occur very often, the error
went unnoticed for a long time.

• AECL was ultimately cited for improperly testing the software, which was only
tested on site in hospitals after a machine was assembled in place.

• The designer had reused software from older Therac-6 and Therac-20 models
that had hardware interlocks which masked the software defects. Some
operators noted that certain situations caused the machines to display
MALFUNCTION followed by a number between 1 and 64 on the display
screen. However, the user manual did not explain nor even address error codes,
so the operators pressed the “P” key (for proceed), to override the warning and
proceed with the treatment.

CNT 4714: Multi-threaded Applications Page 73 Dr. Mark Llewellyn ©

 Thread Synchronization
• To prevent a race condition, access to the shared object must

be properly synchronized.

– Lost update problem: one thread is in the process of updating
the shared value and another thread also attempts to update the
value.

– Even worse is when only part of the object is updated by each
thread in which case part of the object reflects information
from one thread while another part of the same object reflects
information from another thread.

• The problem can be solved by giving one thread at a time
exclusive access to code that manipulates the shared object.
During that time, other threads desiring to manipulate the
object must be forced to wait.

CNT 4714: Multi-threaded Applications Page 74 Dr. Mark Llewellyn ©

Thread Synchronization (cont.)

• When the thread with exclusive access to the object finishes

manipulating the object, one of the blocked threads will be

allowed to proceed and access the shared object.

– The next selected thread will be based on some protocol. The

most common of these is simply FCFS (priority-queue based).

• In this fashion, each thread accessing the shared object

excludes all other threads from accessing the object

simultaneously. This is the process known as mutual

exclusion.

• Mutual exclusion allows the programmer to perform

thread synchronization, which coordinates access to

shared objects by concurrent threads.

CNT 4714: Multi-threaded Applications Page 75 Dr. Mark Llewellyn ©

Synchronization Techniques

• There have been many different methods used to synchronize

concurrent processes. Some of the more common ones are:

– Test and Set Instructions. All general purpose processors now

have this kind of instruction, and it is used to build higher-level

synchronization constructs. Test and set does not block, that

must be built on top of it.

– p and v semaphores. Introduced by Dijkstra in the 1960’s and

was the main synchronization primitive for a long time. Its

easy to build semaphores from test and set instructions.

Semaphores are low-level and can be hard for programmers to

read and debug. For your information the p is short for the

Dutch words proberen te verlangen which means to “try to

decrement” and the v stands for verhogen which means to

increment.

CNT 4714: Multi-threaded Applications Page 76 Dr. Mark Llewellyn ©

Synchronization Techniques (cont.)

– Read/write Locks. These are also commonly referred to as

mutexes (although some people still use the term mutex to

refer to a semaphore.) A lock provides a simple ”turnstile”:

only one thread at a time can be going through (executing in) a

block protected by a lock. Again, it is easy to build a lock from

semaphores.

– Monitors. A monitor is a higher-level synchronization

construct built out of a lock plus a variable that keeps track of

some related condition, such as “the number of unconsumed

bytes in the buffer”. It is easy to build monitors from

read/write locks. A monitor defines several methods as a part

of its protocol. Two of those predefined methods are wait()

and notify().

CNT 4714: Multi-threaded Applications Page 77 Dr. Mark Llewellyn ©

Types of Synchronization
• There are two basic types of synchronization between

threads:

1. Mutual exclusion is used to protect certain critical sections of code
from being executed simultaneously by two or more threads.
(Synchronization without cooperation.)

2. Signal-wait is used when one thread need to wait until another thread
has completed some action before continuing. (Synchronization with
cooperation.)

• Java includes mechanisms for both types of synchronization.

• All synchronization in Java is built around locks. Every Java
object has an associated lock. Using appropriate syntax, you
can specify that the lock for an object be locked when a method
is invoked. Any further attempts to call a method for the locked
object by other threads cause those threads to be blocked until
the lock is unlocked.

CNT 4714: Multi-threaded Applications Page 78 Dr. Mark Llewellyn ©

Thread Synchronization In Java

• Any object can contain an object that implements the Lock

interface (package java.util.concurrent.locks).

• A thread calls the Lock’s lock() method to obtain the

lock.

• Once a lock has been obtained by one thread the Lock

object will not allow another thread to obtain the lock until

the thread releases the lock (by invoking the Lock’s

unlock() method).

• If there are several threads trying to invoke method lock()

on the same Lock object, only one thread may obtain the

lock, with all other threads being placed into the wait state.

CNT 4714: Multi-threaded Applications Page 79 Dr. Mark Llewellyn ©

An Aside on Reentrant Locks

• Class ReentrantLock (package java.util.concurrent.locks)

is a basic implementation of the Lock interface.

– The constructor for a ReentrantLock takes a boolean argument

that specifies whether the lock has a fairness policy. If this is set to

true, the ReentrantLock’s fairness policy states that the longest-

waiting thread will acquire the lock when it is available. If set to false,

there is no guarantee as to which waiting thread will acquire the lock

when it becomes available.

• Using a lock with a fairness policy helps avoid indefinite

postponement (starvation) but can also dramatically reduce

the overall efficiency of a program. Due to the large decrease

in performance, fair locks should be used only in necessary

circumstances.

CNT 4714: Multi-threaded Applications Page 80 Dr. Mark Llewellyn ©

Condition Variables

• If a thread that holds the lock on an object determines that it

cannot continue with its task until some condition is satisfied,

the thread can wait on a condition variable.

• This removes the thread from contention for the processor by

placing it in a wait queue for the condition variable and

releases the lock on the object.

• Condition variables must be associated with a Lock and are

created by invoking Lock method newCondition, which

returns an object that implements the Condition interface.

• To wait on a condition variable, the thread can call the

Condition’s await() method (see Life Cycle of a thread

in previous set of notes).

CNT 4714: Multi-threaded Applications Page 81 Dr. Mark Llewellyn ©

Condition Variables (cont.)

• Invoking the await() method, immediately releases the

associated Lock and places the thread in the wait state for

that Condition. Other threads can then try to obtain the

Lock.

• When a runnable thread completes a task and determines that

the waiting thread can now continue, the runnable thread can

call Condition method signal() to allow a thread in that

Condition’s wait queue to return to the runnable state. At this

point, the thread that transitioned from the wait state to the

runnable state can attempt to reacquire the Lock on the object.

Of course there is no guarantee that it will be able to complete

its task this time and the cycle may repeat.

CNT 4714: Multi-threaded Applications Page 82 Dr. Mark Llewellyn ©

Condition Variables (cont.)

• If multiple threads are in a Condition’s wait queue when a

signal() is invoked, the default implementation of

Condition signals the longest-waiting thread to move to

the runnable state.

• If a thread calls Condition method signalAll(), then all

of the threads waiting for that condition move to the runnable

state and become eligible to reacquire the Lock.

• When a thread is finished with a shared object, it must invoke

method unlock() to release the Lock.

CNT 4714: Multi-threaded Applications Page 83 Dr. Mark Llewellyn ©

Thread States With Synchronization

Thread attempting

access

Queue of threads waiting for lock

Already locked by

another thread

Running State

Queue of threads waiting for notify()

notify() by

another thread

wait() by this thread Lock obtained

by this thread

Unlock by

another thread

– one in queue

moves to

running state

unlock by this thread

does not remove it from

the running state

CNT 4714: Multi-threaded Applications Page 84 Dr. Mark Llewellyn ©

Deadlock

• Deadlock will occur when a waiting thread (call it thread 1)

cannot proceed because it is waiting (either directly or

indirectly) for another thread (call it thread 2) to proceed.,

while simultaneously thread 2 cannot proceed because it is

waiting (either directly or indirectly) for thread 1 to proceed.

• When multiple threads manipulate a shared object using locks,

ensure that if one thread invokes await to enter the wait state

for a condition variable, a separate thread eventually will

invoke method signal to transition the waiting thread on the

condition variable back to the runnable state.

– If multiple threads may be waiting on the condition variable, a separate
thread can invoke method signalAll as a safeguard to ensure that all

of the waiting threads have another opportunity to perform their tasks.

CNT 4714: Multi-threaded Applications Page 85 Dr. Mark Llewellyn ©

Producer/Consumer Problem
 Threads Without Synchronization

• In a producer/consumer relationship, the producer portion of an

application generates data and stores it in a shared object, and

the consumer portion of an application reads data from the

shared object.

– Common examples are print spooling, copying data onto CDs, etc.

• In a multithreaded producer/consumer relationship, a producer

thread generates data and places it in a shared object called a

buffer. A consumer thread reads data from the buffer.

• What we want to consider first is how logic errors can arise if

we do not synchronize access among multiple threads

manipulating shared data.

CNT 4714: Multi-threaded Applications Page 86 Dr. Mark Llewellyn ©

Producer/Consumer w/o Synchronization

• The following example sets up a producer and consumer thread

utilizing a shared buffer (code is on the webpage). The

producer thread generates the integer numbers from 1 to 10,

placing the values in the shared buffer. The consumer process

reads the values in the buffer and prints the sum of all values

consumed.

• Each value the producer thread writes into the buffer should be

consumed exactly once by the consumer thread. However, the

threads in this example are not synchronized.

– This means that data can be lost if the producer writes new data into

the buffer before the consumer has consumed the previous value.

– Similarly, data can be incorrectly duplicated if the consumer thread

consumes data again before the producer thread has produced the next

value.

CNT 4714: Multi-threaded Applications Page 87 Dr. Mark Llewellyn ©

Producer/Consumer w/o Synchronization
(cont.)

• Since the producer thread will produce the values from 1 to
10, the correct sum that should be 55.

• The consumer process will arrive at this value only if each
item produced by the producer thread is consumed exactly
once by the consumer thread. No values are missed and none
are consumed twice.

• I’ve set it up so that each thread writes to the screen what is
being produced and what is being consumed.

• Note: the producer/consumer threads are put to sleep for a
random interval between 0 and 3 seconds to emphasize the
fact that in multithreaded applications, it is unpredictable
when each thread will perform its task and for how long it
will perform the task when it has a processor.

CNT 4714: Multi-threaded Applications Page 88 Dr. Mark Llewellyn ©

// Producer's run method stores the values 1 to 10 in buffer.

import java.util.Random;

public class Producer implements Runnable{

 private static Random generator = new Random();

 private Buffer sharedLocation; // reference to shared object

 // constructor

 public Producer(Buffer shared) {

 sharedLocation = shared;

 } // end Producer constructor

 // store values from 1 to 10 in sharedLocation

 public void run() {

 int sum = 0;

 for (int count = 1; count <= 10; count++) {

 try { // sleep 0 to 3 seconds, then place value in Buffer

 Thread.sleep(generator.nextInt(3000)); // sleep thread

 sharedLocation.set(count); // set value in buffer

 sum += count; // increment sum of values

 System.out.printf("\t%2d\n", sum);

 } // end try

 // if sleeping thread interrupted, print stack trace

 catch (InterruptedException exception) {

 exception.printStackTrace();

 } // end catch

 } // end for

 System.out.printf("\n%s\n%s\n", "Producer done producing.",

 "Terminating Producer.");

 } // end method run

} // end class Producer

Producer Thread Class

Randomly

sleep the

thread for up

to 3 seconds

CNT 4714: Multi-threaded Applications Page 89 Dr. Mark Llewellyn ©

// Consumer's run method loops ten times reading a value from buffer.

import java.util.Random;

public class Consumer implements Runnable {

 private static Random generator = new Random();

 private Buffer sharedLocation; // reference to shared object

 // constructor

 public Consumer(Buffer shared) {

 sharedLocation = shared;

 } // end Consumer constructor

 // read sharedLocation's value four times and sum the values

 public void run() {

 int sum = 0;

 for (int count = 1; count <= 10; count++) {

 // sleep 0 to 3 seconds, read value from buffer and add to sum

 try {

 Thread.sleep(generator.nextInt(3000));

 sum += sharedLocation.get();

 System.out.printf("\t\t\t%2d\n", sum);

 } // end try

 // if sleeping thread interrupted, print stack trace

 catch (InterruptedException exception) {

 exception.printStackTrace();

 } // end catch

 } // end for

 System.out.printf("\n%s %d.\n%s\n",

 "Consumer read values totaling", sum, "Terminating Consumer.");

 } // end method run

} // end class Consumer

Consumer Thread Class

Randomly

sleep the

thread for up

to 3 seconds

CNT 4714: Multi-threaded Applications Page 90 Dr. Mark Llewellyn ©

Buffer Interface

// Buffer interface specifies methods called by Producer and Consumer.

public interface Buffer {

 public void set(int value); // place int value into Buffer (WRITE)

 public int get(); // return int value from Buffer (READ)

} // end interface Buffer

// UnsynchronizedBuffer represents a single shared integer.

public class UnsynchronizedBuffer implements Buffer {

 private int buffer = -1; // shared by producer and consumer threads

 // place value into buffer

 public void set(int value) {

 System.out.printf("Producer writes\t%2d", value);

 buffer = value;

 } // end method set

 // return value from buffer

 public int get() {

 System.out.printf("Consumer reads\t%2d", buffer);

 return buffer;

 } // end method get

} // end class UnsynchronizedBuffer

Unsynchronized Buffer

 Class

CNT 4714: Multi-threaded Applications Page 91 Dr. Mark Llewellyn ©

// Application shows two threads manipulating an unsynchronized buffer.

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

public class SharedBufferTest {

 public static void main(String[] args){

 // create new thread pool with two threads

 ExecutorService application = Executors.newFixedThreadPool(2);

 // create UnsynchronizedBuffer to store ints

 Buffer sharedLocation = new UnsynchronizedBuffer();

 System.out.println(" \t\t \tSum \tSum");

 System.out.println("Action\t\tValue\tProduced\tConsumed");

 System.out.println("------\t\t-----\t--------\t--------\n");

 // try to start producer and consumer giving each of them access to SharedLocation

 try {

 application.execute(new Producer(sharedLocation));

 application.execute(new Consumer(sharedLocation));

 } // end try

 catch (Exception exception) {

 exception.printStackTrace();

 } // end catch

 application.shutdown(); // terminate application when threads end

 } // end main

} // end class SharedBufferTest

Producer/Consumer

Driver Class

CNT 4714: Multi-threaded Applications Page 92 Dr. Mark Llewellyn ©

sharedLocation.set(count)

Producer Side Consumer Side

sharedLocation

(Buffer)

set method returns

sum += sharedLocation.get()

get method returns

Unsynchronized Case

running running

Both the producer

and consumer

threads are always in

the running state –

never blocked.

CNT 4714: Multi-threaded Applications Page 93 Dr. Mark Llewellyn ©

The unsynchronizd

threads did not produce

the same sum. The

producer produced

values that sum to 55,

but the consumer

consumed values that

sum to 76! Notice that

the consumer read the

value 10 six times and

failed to read the values

of several values at all

(e.g. 1, 4,5,6,7 and 8).

CNT 4714: Multi-threaded Applications Page 94 Dr. Mark Llewellyn ©

In this execution, the sum

produced by the consumer

is closer but still inaccurate

because the consumer read

the values of 1, 5 and 10

two times and failed to read

the values of 2, 4, 6, and 9

at all.

CNT 4714: Multi-threaded Applications Page 95 Dr. Mark Llewellyn ©

// SynchronizedBuffer synchronizes access to a single shared integer.

import java.util.concurrent.locks.Lock;

import java.util.concurrent.locks.ReentrantLock;

import java.util.concurrent.locks.Condition;

public class SynchronizedBuffer implements Buffer

{

 // Lock to control synchronization with this buffer

 private Lock accessLock = new ReentrantLock();

 // condition variables to control reading and writing

 private Condition canWrite = accessLock.newCondition();

 private Condition canRead = accessLock.newCondition();

 private int buffer = -1; // shared by producer and consumer threads

 private boolean occupied = false; // whether buffer is occupied

 // place int value into buffer

 public void set(int value)

 {

 accessLock.lock(); // lock this object

 // output thread information and buffer information, then wait

 try

 {

 // while buffer is not empty, place thread in waiting state

 while (occupied)

 {

 System.out.println("Producer tries to write.");

 displayState("Buffer full. Producer waits.");

 canWrite.await(); // wait until buffer is empty

 } // end while

Synchronized Buffer

 Class

No fairness policy needed since only a

single producer thread and single

consumer thread

Condition variables on the lock.

Condition canWrite contains a

queue for threads waiting to

write while the buffer is full. If

the buffer is full the Producer

calls method await on this

condition. When the Consumer

reads data from a full buffer, it

calls method signal on this

Condition. Condition canRead

contains a queue for threads

waiting while the buffer is empty.

If the buffer is empty the

Consumer calls method await

on this Condition. When the

Producer writes to the empty

buffer, it will call method signal

on this Condition.

Acquire lock

CNT 4714: Multi-threaded Applications Page 96 Dr. Mark Llewellyn ©

 buffer = value; // set new buffer value

 // indicate producer cannot store another value

 // until consumer retrieves current buffer value

 occupied = true;

 displayState("Producer writes " + buffer);

 // signal thread waiting to read from buffer

 canRead.signal();

 } // end try

 catch (InterruptedException exception) {

 exception.printStackTrace();

 } // end catch

 finally {

 accessLock.unlock(); // unlock this object

 } // end finally

 } // end method set

 // return value from buffer

 public int get() {

 int readValue = 0; // initialize value read from buffer

 accessLock.lock(); // lock this object

 // output thread information and buffer information, then wait

 try {

 // while no data to read, place thread in waiting state

 while (!occupied) {

 System.out.println("Consumer tries to read.");

 displayState("Buffer empty. Consumer waits.");

 canRead.await(); // wait until buffer is full

 } // end while

Signal Consumer thread that a value

has been produced and can be read.

Unlock object before exiting method

Acquire lock on the buffer

Consumer must wait until a value

has been produced by the

Producer. Await signal by

Producer

CNT 4714: Multi-threaded Applications Page 97 Dr. Mark Llewellyn ©

 // indicate that producer can store another value

 // because consumer just retrieved buffer value

 occupied = false;

 readValue = buffer; // retrieve value from buffer

 displayState("Consumer reads " + readValue);

 // signal thread waiting for buffer to be empty

 canWrite.signal();

 } // end try

 // if waiting thread interrupted, print stack trace

 catch (InterruptedException exception) {

 exception.printStackTrace();

 } // end catch

 finally {

 accessLock.unlock(); // unlock this object

 } // end finally

 return readValue;

 } // end method get

 // display current operation and buffer state

 public void displayState(String operation)

 {

 System.out.printf("%-40s%d\t\t\t\t%b\n", operation, buffer,

 occupied);

 } // end method displayState

} // end class SynchronizedBuffer

Signal waiting Producer that

the buffer is empty and it can

write

Make sure lock is released

CNT 4714: Multi-threaded Applications Page 98 Dr. Mark Llewellyn ©

// Application shows two threads manipulating a synchronized buffer.

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

public class SharedBufferTest2

{

 public static void main(String[] args)

 {

 // create new thread pool with two threads

 ExecutorService application = Executors.newFixedThreadPool(2);

 // create SynchronizedBuffer to store ints

 Buffer sharedLocation = new SynchronizedBuffer();

 System.out.println("Using Standard Locking");

 System.out.printf("%-40s%s\t\t%s\n%-40s%s\n\n", "Operation",

 "Buffer Contents", "Occupied", "---------", "---------------\t\t--------");

 try { // try to start producer and consumer

 application.execute(new Producer(sharedLocation));

 application.execute(new Consumer(sharedLocation));

 } // end try

 catch (Exception exception)

 {

 exception.printStackTrace();

 } // end catch

 application.shutdown();

 } // end main

} // end class SharedBufferTest2

Driver Class For Illustrating

Synchronization In

Producer/Consumer Problem

Only change between

SharedBufferTest for

unsynchronized version

CNT 4714: Multi-threaded Applications Page 99 Dr. Mark Llewellyn ©

accessLock.unlock(); //release lock

Producer Side Consumer Side

sharedLocation

(Buffer)
set method returns

readValue= buffer;

get method returns

Synchronized Case

accessLock.lock(); //acquire lock

while (occupied) //buffer not empty

canWrite.await(); block on condition

buffer = value; //perform write

occupied = true; //indicate write

canRead.signal(); //signal thread

canWrite condition queue

no

signal from consumer

lock acquisition queue

accessLock.lock(); //acquire lock

write

while (!occupied) //buffer empty

no

canRead.await(); block

canRead condition queue

occupied = false; //indicate read

signal from producer

canWrite.signal(); //signal thread

accessLock.unlock(); //release lock

released

read

released

wait wait

CNT 4714: Multi-threaded Applications Page 100 Dr. Mark Llewellyn ©

Producer Thread

Consumer Thread

Running

Running

Blocked

accessLock queue

canWrite condition queue

canRead condition queue

buffer full (occupied)

canWrite signaled

lock request fails

lock released

lock request fails

buffer empty

canRead signaled

State Diagram – Synchronized Version

CNT 4714: Multi-threaded Applications Page 101 Dr. Mark Llewellyn ©

Both the Producer and Consumer

threads produced the same sum –

synchronized threads

CNT 4714: Multi-threaded Applications Page 102 Dr. Mark Llewellyn ©

Both the Producer and Consumer

threads produced the same sum –

synchronized threads

CNT 4714: Multi-threaded Applications Page 103 Dr. Mark Llewellyn ©

Monitors and Monitor Locks
• Another way to perform synchronization is to use Java’s built-in

monitors. Every object has a monitor. Strictly speaking, the monitor is
not allocated unless it is used.

• A monitor allows one thread at a time to execute inside a synchronized
statement on the object. This is accomplished by acquiring a lock on the
object when the program enters the synchronized statement.

• Where object is the object whose monitor lock will be acquired.

• If there are several synchronized statements attempting to execute on an
object at the same time, only one of them may be active on the object at
once – all the other threads attempting to enter a synchronized statement
on the same object are placed into the blocked state.

synchronized (object)

{

 statements

} //end synchronized statement

CNT 4714: Multi-threaded Applications Page 104 Dr. Mark Llewellyn ©

Mutual Exclusion Over a Block of Statements

• When a synchronized statement finishes executing, the monitor

lock on the object is released and the highest priority blocked

thread attempting to enter a synchronized statement proceeds.

• Applying mutual exclusion to a block of statements rather than

to an entire class or an entire method is handled in much the

same manner, by attaching the keyword synchronized before a

block of code.

• You must explicitly mention in parentheses the object whose

lock must be acquired before the block can be entered.

• The next page illustrates the steam boiler pressure gauge

problem using a synchronized statement block to control the

threads access to the pressure gauge.

CNT 4714: Multi-threaded Applications Page 105 Dr. Mark Llewellyn ©

Monitors and Monitor Locks (cont.)

Synchronized

block

Synchronized statement

requires an Object to lock.

CNT 4714: Multi-threaded Applications Page 106 Dr. Mark Llewellyn ©

Monitors and Monitor Locks (cont.)

CNT 4714: Multi-threaded Applications Page 107 Dr. Mark Llewellyn ©

Monitors and Monitor Locks (cont.)

• Java also allows synchronized methods. A synchronized method

is equivalent to a synchronized statement enclosing the entire

body of a method.

• If a thread obtains the monitor lock on an object and then

discovers that it cannot continue with its task until some

condition is satisfied, the thread can invoke Object method wait,

releasing the monitor lock on the object. This will place the

thread in the wait state.

• When a thread executing a synchronized statement completes or

satisfies the condition on which another thread may be waiting, it

can invoke Object method notify to allow a waiting thread to

transition to the blocked state again.

CNT 4714: Multi-threaded Applications Page 108 Dr. Mark Llewellyn ©

Caution When Using Synchronization

• As with any multi-threaded application, care must be taken

when using synchronization to achieve the desired effect and

not introduce some serious defect in the application.

• Consider the variation of the pressure gauge example that

we’ve been dealing with on the following page. Study the

code carefully and try to determine if it will achieve the same

effect as the previous version of the code.

• Is it correct? Why or why not?

CNT 4714: Multi-threaded Applications Page 109 Dr. Mark Llewellyn ©

Does this code correctly synchronize the pressure gauge reading threads?

No! The “this” object is one of the 10 different threads that are created.

Each thread will successfully grab its own lock, and there will be no

exclusion between the different threads.

Synchronization excludes threads working on the same object; it does

not synchronize the same method on different objects!

CNT 4714: Multi-threaded Applications Page 110 Dr. Mark Llewellyn ©

NO!

