
CNT 4714: PHP – Database Connectivity Page 1 Dr. Mark Llewellyn ©

CNT 4714: Enterprise Computing

Spring 2013

 PHP – Database Connectivity

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 407-823-2790

 http://www.cs.ucf.edu/courses/cnt4714/spr2013

CNT 4714: PHP – Database Connectivity Page 2 Dr. Mark Llewellyn ©

Form Processing and Business Logic

• XHTML forms enable web pages to collect data from users

and send it to a web server for processing.

• Interaction of this kind between users and web servers is vital

to e-commerce applications. Such capabilities allow users to

purchase products, request information, send and receive

web-based email, perform on-line paging and take advantage

of various other online services.

• The XHTML document on the next few pages collects

information from a user for the purposes of adding them to a

mailing list.

• The PHP file on page 3 validates the data entered by the user

through the form and “registers” them in the mailing list

database.

CNT 4714: PHP – Database Connectivity Page 3 Dr. Mark Llewellyn ©

This XHTML document

generates the form that the

user will submit to the
server via form.php

form.html

CNT 4714: PHP – Database Connectivity Page 4 Dr. Mark Llewellyn ©

form.html

CNT 4714: PHP – Database Connectivity Page 5 Dr. Mark Llewellyn ©

form.html

CNT 4714: PHP – Database Connectivity Page 6 Dr. Mark Llewellyn ©

Function extract
(associativeArray)

creates a variable-value pair

corresponding to each key-

value pair in the associative
array $_POST.

form.php

See page 17 for

explanation of regular

expressions.

Function die() terminates script execution.

An error has occurred, no need to continue.

CNT 4714: PHP – Database Connectivity Page 7 Dr. Mark Llewellyn ©

form.php

CNT 4714: PHP – Database Connectivity Page 8 Dr. Mark Llewellyn ©

form.php

CNT 4714: PHP – Database Connectivity Page 9 Dr. Mark Llewellyn ©

Execution of
form.html within

a web browser

CNT 4714: PHP – Database Connectivity Page 10 Dr. Mark Llewellyn ©

After execution of

form.php has

verified correct

entries made

within the form.

CNT 4714: PHP – Database Connectivity Page 11 Dr. Mark Llewellyn ©

After execution of

form.php has

verified correct

entries made

within the form.

CNT 4714: PHP – Database Connectivity Page 12 Dr. Mark Llewellyn ©

User enters an

improperly

formatted

telephone number

in the form.

CNT 4714: PHP – Database Connectivity Page 13 Dr. Mark Llewellyn ©

form.php issues

error regarding

improperly

formatted

telephone number.

CNT 4714: PHP – Database Connectivity Page 14 Dr. Mark Llewellyn ©

How the Form Example Works

• The action attribute of the form element, indicates that

when the user clicks the Register button, the form data

will be posted to form.php for processing.

• Using method = “post” appends the form data to the

browser request that contains the protocol (i.e., HTTP) and

the requested resource’s URL. Scripts located on the web

server’s machine (or accessible through the network) can

access the form data sent as part of the request.

• Each of the form’s input fields are assigned a unique name.

When Register is clicked, each field’s name and value

are sent to the web server.

• Script form.php then accesses the value for each specific

field through the global array $_POST.

CNT 4714: PHP – Database Connectivity Page 15 Dr. Mark Llewellyn ©

How the Form Example Works (cont.)

• The superglobal arrays are associative arrays predefined by

PHP that hold variable acquired from the user input, the

environment, or the web server and are accessible in any

variable scope.

– If the information from the form had been submitted via the HTTP
method get, then the superglobal array $_GET would contain the

name-value pairs.

• Since the XHTML form and the PHP script “communicate”

via the name-value pairs, it is a good idea to make the

XHTML object names meaningful so that the PHP script that

retrieves the data is easier to understand.

CNT 4714: PHP – Database Connectivity Page 16 Dr. Mark Llewellyn ©

Register_globals

• In PHP versions 4.2 and higher, the directive

register_globals is set to Off by default for security

reasons.

• Turning off register_globals means that all variables

sent from an XHTML form to a PHP document now must be

accessed using the appropriate superglobal array (either

$_POST or $_GET).

• When this directive was turned On, as was the default case in

PHP versions prior to 4.2, PHP created an individual global

variable corresponding to each form field.

CNT 4714: PHP – Database Connectivity Page 17 Dr. Mark Llewellyn ©

Validation of Form Generated Data

• The form example illustrates an important concept in the

validation of user input. In this case, we simply checked the

validity of the format of the telephone number entered by the

client user.

• In general, it is crucial to validate information that will be

entered into database or used in mailing lists. For example,

validation can be used to ensure that credit-card numbers

contain the proper number of digits before the numbers are

encrypted to a merchant.

• In this case, the form.php script is implementing the business

logic or business rules for our application.

CNT 4714: PHP – Database Connectivity Page 18 Dr. Mark Llewellyn ©

Pattern Matching in PHP

• For powerful string comparisons (pattern matching), PHP
provides functions ereg and preg_match, which use
regular expressions to search a string for a specified pattern.

• Function ereg uses Portable Operating System Interface
(POSIX) extended regular expressions.

– POSIX-extended regular expressions are a standard to which PHP
regular expression conform.

• Function preg_match provides Perl-compatible regular
expressions.

• Perl-compatible regular expressions are more widely used
that POSIX regular expressions. PHP’s support for Perl-
compatible regular expressions eases migration from Perl to
PHP. The following examples illustrates these concepts.

CNT 4714: PHP – Database Connectivity Page 19 Dr. Mark Llewellyn ©

^ matches at beginning

of a string

expression.php

CNT 4714: PHP – Database Connectivity Page 20 Dr. Mark Llewellyn ©

Uses a regular expression to

match a word ending in “ow”.

$ matches at end of a

string

expression.php

CNT 4714: PHP – Database Connectivity Page 21 Dr. Mark Llewellyn ©

Output From expression.php - Example

CNT 4714: PHP – Database Connectivity Page 22 Dr. Mark Llewellyn ©

Verifying a Username and Password Using PHP

• It is often the case that a private website is created which is

accessible only to certain individuals.

• Implementing privacy generally involves username and

password verification.

• In the next example, we’ll see an XHTML form that queries

a user for a username and password. The fields

USERNAME and PASSWORD are posted to the PHP script

verify.php for verification.

– For simplicity, data is not encrypted before sending it to the server.

– For more information on PHP encryption functions visit:

http://www.php.net/manual/en/ref.mcrypt.php.

http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php

CNT 4714: PHP – Database Connectivity Page 23 Dr. Mark Llewellyn ©

password.html – page 1

CNT 4714: PHP – Database Connectivity Page 24 Dr. Mark Llewellyn ©

password.html – page 2

CNT 4714: PHP – Database Connectivity Page 25 Dr. Mark Llewellyn ©

password.html – page 3

CNT 4714: PHP – Database Connectivity Page 26 Dr. Mark Llewellyn ©

password.php – page 1

CNT 4714: PHP – Database Connectivity Page 27 Dr. Mark Llewellyn ©

password.php – page 2

CNT 4714: PHP – Database Connectivity Page 28 Dr. Mark Llewellyn ©

password.php – page 3

CNT 4714: PHP – Database Connectivity Page 29 Dr. Mark Llewellyn ©

password.php – page 4

CNT 4714: PHP – Database Connectivity Page 30 Dr. Mark Llewellyn ©

password.php – page 5

CNT 4714: PHP – Database Connectivity Page 31 Dr. Mark Llewellyn ©

Execution of

password.html. Client-

side XHTML form.

User clicks on New

User button to enter

their information.

Execution of

password.php to

enter a new user.

CNT 4714: PHP – Database Connectivity Page 32 Dr. Mark Llewellyn ©

Execution of

password.html. Client-

side XHTML form. User

clicks on Enter button to

submit and verify their

information.

Execution of

password.php to

invalidate an

attempted entry by a

user.

CNT 4714: PHP – Database Connectivity Page 33 Dr. Mark Llewellyn ©

How password.php Works
• The PHP script password.php verifies the client’s username

and password by querying a database. For this example, the

“database” of usernames and passwords is just a text file (for

simplicity). Existing users are validated against this file, and

new users are appended to it.

• Whether we are dealing with a new

user is determined by calling function

isset to test if variable $NewUser

has been set.

• When the user submits the password.html form to the server,

they click either Enter or New User button. After calling
function extract, either variable $NewUser or $Enter is

created depending on which button was selected. If
$NewUser has not been set, we assume the user clicked Enter.

The password.txt “database”

CNT 4714: PHP – Database Connectivity Page 34 Dr. Mark Llewellyn ©

PHP and Database Connectivity
• PHP offers built-in support for a wide variety of database

systems from Unix DBM through relational systems such as

MySQL to full size commercial systems like Oracle.

• We’ll continue to use MySQL as the underlying database

system so that you can easily compare the work we’ve done

with MySQL using Java servlets and JSPs.

• Since we installed PHP 5.2.17 without any extensions loaded,

you’ll need to go back and re-run the PHP installer and this

time, select Change (See next page).

– Versions of MySQL greater than 4.1.0 use MySQLi extensions.

– Versions of MySQL less than 4.1.0 use MySQL extensions.

CNT 4714: PHP – Database Connectivity Page 35 Dr. Mark Llewellyn ©

PHP and Database Connectivity (cont.)

We need to add the mysql

and mysqli extensions to

PHP

CNT 4714: PHP – Database Connectivity Page 36 Dr. Mark Llewellyn ©

PHP and Database Connectivity (cont.)

Leave this as it is…click

Next.

CNT 4714: PHP – Database Connectivity Page 37 Dr. Mark Llewellyn ©

PHP and Database Connectivity (cont.)

Select the Extensions

box….it will also have a big

red X in it right now. Click

on the + sign to expand it.

CNT 4714: PHP – Database Connectivity Page 38 Dr. Mark Llewellyn ©

PHP and Database Connectivity (cont.)

Scroll down through the list

of extension until you find

Mysql and MySQLi. Select

both of them (the big red X

will disappear). Then click

Next.

CNT 4714: PHP – Database Connectivity Page 39 Dr. Mark Llewellyn ©

PHP and Database Connectivity (cont.)

Click Change and you’ll be

done. This might require a

reboot depending on your

system. Just follow the PHP

prompts.

CNT 4714: PHP – Database Connectivity Page 40 Dr. Mark Llewellyn ©

PHP and Database Connectivity (cont.)

After reconfiguring PHP,

you’ll have a new folder in

your PHP directory named
ext. This folder will

contain two dynamic link
libraries, one for mysql and

one for mysqli (see next

page).

CNT 4714: PHP – Database Connectivity Page 41 Dr. Mark Llewellyn ©

PHP and Database Connectivity (cont.)

These are the two dynamic

link libraries that hold the
mysql and mysqli

extensions.

CNT 4714: PHP – Database Connectivity Page 42 Dr. Mark Llewellyn ©

PHP should be configured for

MySQL. You can verify that the

php.ini file was properly read and

the MySQL extensions are loaded
by running the hello.php script

and looking for these entries.

CNT 4714: PHP – Database Connectivity Page 43 Dr. Mark Llewellyn ©

PHP and Database Connectivity (cont.)

• PHP contains a fairly extensive set of commands that can be

used to access and manipulate MySQL databases.

• A very brief listing of some of these commands appears on

the next page.

• For a complete listing see:

 http://us2.php.net/manual/en/print/ref.mysql.php.

 http://us2.php.net/manual/en/print/ref.mysqli.php.

http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php

CNT 4714: PHP – Database Connectivity Page 44 Dr. Mark Llewellyn ©

PHP MySQLi Extensions
The PHP online documentation
for the mysql and mysqli

extensions are quite complete. I

suggest you bookmark them

now so that you can refer to this

documentation.

CNT 4714: PHP – Database Connectivity Page 45 Dr. Mark Llewellyn ©

PHP and Database Connectivity (cont.)

• Now that you have PHP set to accept MySQL extensions,

let’s connect to the bike database that we used for examples

with Java servlets and JSPs.

• The following example is a simple database connection

process in PHP where the client interacts with the database

from an XHTML form that simply asks them to select which

attributes from the bikes table that they would like to display.

This is done through the data.html file.

• When the client clicks the submit query button, the

database.php script executes by connecting to the

database, posting the query, retrieving the results, and

displaying them to the client.

CNT 4714: PHP – Database Connectivity Page 46 Dr. Mark Llewellyn ©

data.html

Client side

CNT 4714: PHP – Database Connectivity Page 47 Dr. Mark Llewellyn ©

database.php

Server side

Page 1

Connect to MySQL database.

URL, username, password, and

database all specified.

Default query is to select the attributes chosen by

the client for use in a SELECT query.

CNT 4714: PHP – Database Connectivity Page 48 Dr. Mark Llewellyn ©

database.php

Server side

Page 2

Get metadata for
the query

Display metadata in the
top row of the table

CNT 4714: PHP – Database Connectivity Page 49 Dr. Mark Llewellyn ©

database.php

Server side

Page 3

CNT 4714: PHP – Database Connectivity Page 50 Dr. Mark Llewellyn ©

Execution of data.html – Client side

Execution of data.html (client side of

the application) showing the drop-

down menu for the client to select the

attributes for the query.

When the selection is made and the

Send Query button is clicked the

results on the following page will be

displayed.

CNT 4714: PHP – Database Connectivity Page 51 Dr. Mark Llewellyn ©

Results of query SELECT *

FROM bikes. Display

indicates that 14 rows were

included in the result.

CNT 4714: PHP – Database Connectivity Page 52 Dr. Mark Llewellyn ©

Cookies
• A cookie is a text file that a Web site stores on a client’s

computer to maintain information about the client during and

between browsing sessions.

• A Web site can store a cookie on a client’s computer to

record user preferences and other information that the Web

site can retrieve during the client’s subsequent visits. For

example, many Web sites use cookies to store client’s

zipcodes. The Web site can retrieve the zipcode from the

cookie and provide weather reports and news updates

tailored to the user’s region.

• Web sites also use cookies to track information about client

activity. Analysis of information collected via cookies can

reveal the popularity of Web sites or products.

CNT 4714: PHP – Database Connectivity Page 53 Dr. Mark Llewellyn ©

Cookies (cont.)

• Marketers use cookies to determine the effectiveness of

advertising campaigns.

• Web sites store cookies on users’ hard drives, which raises

issues regarding security and privacy. Web sites should not

store critical information, such as credit-card numbers or

passwords, in cookies, because cookies are just text files that

anyone can read.

• Several cookie features address security and privacy

concerns. A server can access only the cookies that it has

placed on the client.

• A cookies has an expiration date, after which the Web

browser deletes it.

CNT 4714: PHP – Database Connectivity Page 54 Dr. Mark Llewellyn ©

Cookies (cont.)

• Users who are concerned about the privacy and security

implications of cookies can disable them in their Web

browsers. However, the disabling of cookies can make it

impossible for the user to interact with Web sites that rely on

cookies to function properly.

• Information stored in the cookie is sent to the Web server

from which it originated whenever the user requests a Web

page from that particular server. The Web server can send

the client XHTML output that reflects the preferences or

information that is stored in the cookie.

• The location of the cookie file varies from browser to

browser. Internet Explorer places cookies in the Cookies

directory located at C:\Documents and Settings\...\Cookies

CNT 4714: PHP – Database Connectivity Page 55 Dr. Mark Llewellyn ©

Cookies (cont.)

• After a cookie is created, a text file is added to this directory.

While the name of the file will vary from user to user a

typical example is shown below.

• The contents of a cookie are shown on page 74.

CNT 4714: PHP – Database Connectivity Page 56 Dr. Mark Llewellyn ©

Cookies (cont.)

• Now let’s create the code necessary to create our own cookie.

• In this example, a PHP script is invoked from a client-side

HTML document. The HTML document creates a form for the

user to enter the information that will be stored in the cookie.

(Often the information that is stored in a cookie will be

extracted from several different areas and may involved

tracking the client’s actions at the Web site.)

• Once the user has entered their information, when they click the

Write Cookie button, the cookies.php script executes.

• The XHTML document and the PHP script are shown on the
next pages. The XHTML document cookies.html is on

page 36 and the PHP script cookies.php appears on page

37.

CNT 4714: PHP – Database Connectivity Page 57 Dr. Mark Llewellyn ©

cookies.html

CNT 4714: PHP – Database Connectivity Page 58 Dr. Mark Llewellyn ©

cookies.php – page 1

Function setcookie sets the

cookies to the values passed from
the cookies.html form. Function
setcookie prints XHTML header

information and therefore it needs to
be called before any other XHTML
(including comments) is printed.

The third argument to
setcookie is optional and

indicates the expiration date of
the cookie. In this case it is
set to expire 5 days from the
current time. Function time

returns the current time and
then we add to this the
number of seconds after
which the cookie is to expire.

CNT 4714: PHP – Database Connectivity Page 59 Dr. Mark Llewellyn ©

Cookies (cont.)

HTML form
generated by

cookies.html

CNT 4714: PHP – Database Connectivity Page 60 Dr. Mark Llewellyn ©

Cookies (cont.)

Output from
cookies.php script

showing the values in
the newly created
cookie.

CNT 4714: PHP – Database Connectivity Page 61 Dr. Mark Llewellyn ©

Cookies (cont.)

• Once the cookie has been created, the cookies.php script

gives the user the chance to view the newly created cookie by

invoking the readCookies.php script from within the

cookies.php script by clicking on the link.

• The readCookies.php script code is illustrated on the next

page followed by the output from the execution of this PHP

script.

CNT 4714: PHP – Database Connectivity Page 62 Dr. Mark Llewellyn ©

readCookies.php

Superglobal array
holding cookie.

CNT 4714: PHP – Database Connectivity Page 63 Dr. Mark Llewellyn ©

Cookies (cont.)

Output from the
readCookies.php

script.

CNT 4714: PHP – Database Connectivity Page 64 Dr. Mark Llewellyn ©

Contents of the

cookie stored

on the client

machine.

CNT 4714: PHP – Database Connectivity Page 65 Dr. Mark Llewellyn ©

Cookies (cont.)

Cookie data as stored/viewed in Opera
11.52

CNT 4714: PHP – Database Connectivity Page 66 Dr. Mark Llewellyn ©

Dynamic Content in PHP
• Of all the strengths PHP exhibits as a server-side scripting

language, perhaps its greatest strength lies in its ability to

dynamically change XHTML output based on user input.

• In this final section of notes, we’ll build on the examples we’ve

constructed in the previous two sets of notes by combining

form.html and form.php into one dynamic PHP document

named dynamicForm2.php.

• We’ll add error checking to the user input fields and inform the

user of invalid entries on the form itself, rather than on an error

page. If an error exists, the script maintains the previously

submitted values in each form element.

• Finally, after the form has been successfully completed, we’ll

store the input from the user in a MySQL database.

CNT 4714: PHP – Database Connectivity Page 67 Dr. Mark Llewellyn ©

User fills in the form and clicks
the Register button.

CNT 4714: PHP – Database Connectivity Page 68 Dr. Mark Llewellyn ©

Screen the user sees
after clicking the
Register button.

CNT 4714: PHP – Database Connectivity Page 69 Dr. Mark Llewellyn ©

Screen the user sees
after clicking to see
the entire database.

CNT 4714: PHP – Database Connectivity Page 70 Dr. Mark Llewellyn ©

Dynamic nature of the PHP form is illustrated
when the user fails to enter proper information
into the form. In this case, the user forgot to enter
their first name. Error checking is in place on
each user input location and the page is
dynamically updated to reflect the error
processing and correction capabilities. The
database will not be updated until the user has
correctly filled in all required fields.

CNT 4714: PHP – Database Connectivity Page 71 Dr. Mark Llewellyn ©

Screen shot from MySQL of the contacts relation
after the inclusion of several users. Note that the
values in the table are the same as those returned to
the PHP document in the previous slide.

CNT 4714: PHP – Database Connectivity Page 72 Dr. Mark Llewellyn ©

dynamicForm2.php – page 1

CNT 4714: PHP – Database Connectivity Page 73 Dr. Mark Llewellyn ©

dynamicForm2.php – page 2

CNT 4714: PHP – Database Connectivity Page 74 Dr. Mark Llewellyn ©

dynamicForm2.php – page 3

CNT 4714: PHP – Database Connectivity Page 75 Dr. Mark Llewellyn ©

dynamicForm2.php – page 4

Invoke PHP script to see
contents of entire
database if user clicks
this link. Code begins on
page 14.

The form created is self-
submitting (i.e., it posts to

itself). This is done by setting
the action to

dynamicForm2.php

CNT 4714: PHP – Database Connectivity Page 76 Dr. Mark Llewellyn ©

dynamicForm2.php – page 5

The $$variable notation specifies variable
variables. PHP permits the use of variable
variables to allow developers to reference
variables dynamically.
The expression $$variable could also be
written as ${$variable} for added clarity.

CNT 4714: PHP – Database Connectivity Page 77 Dr. Mark Llewellyn ©

formDatabase2.php – page 1

CNT 4714: PHP – Database Connectivity Page 78 Dr. Mark Llewellyn ©

formDatabase2.php – page 2

CNT 4714: PHP – Database Connectivity Page 79 Dr. Mark Llewellyn ©

Schema of the MailingList
database table contacts required
for the PHP database example to
work. Script is available on the
course code page and shown on
the next page.

CNT 4714: PHP – Database Connectivity Page 80 Dr. Mark Llewellyn ©

The script to generate/populate
the MailingList database table
contacts required for the PHP
database example to work. Script
is available on the course code
page.

