

CIS Quiz 4 Review Questions - Solutions

1) What is the prime factorization of 175?

$$175 = 5^2 \times 7$$

2) Prove that 2 is a generator mod 13.

$2^1 \equiv 2 \pmod{13}$	$2^7 \equiv 11 \pmod{13}$
$2^2 \equiv 4 \pmod{13}$	$2^8 \equiv 9 \pmod{13}$
$2^3 \equiv 8 \pmod{13}$	$2^9 \equiv 5 \pmod{13}$
$2^4 \equiv 3 \pmod{13}$	$2^{10} \equiv 10 \pmod{13}$
$2^5 \equiv 6 \pmod{13}$	$2^{11} \equiv 7 \pmod{13}$
$2^6 \equiv 12 \pmod{13}$	$2^{12} \equiv 1 \pmod{13}$

This shows that the smallest positive integer for which $2^k \equiv 1 \pmod{13}$ is 12, this 2 is a generator.

3) What is the remainder when 37^{129} is divided by 80?

$$\phi(80) = \phi(5)(16) = \phi(5) \phi(16) = (5-1)(16-8) = 32. \text{ (4 pts)}$$

Thus, $37^{32} \equiv 1 \pmod{80}$.

$$\begin{aligned} 37^{129} &\equiv (37^{32})^4(37) \pmod{80} \text{ (3 pts)} \\ &\equiv (1)^4(37) \pmod{80} \\ &\equiv 37 \pmod{80} \text{ (1 pt)} \end{aligned}$$

4) Factor 20701 using the Fermat Factoring method.

$$\sqrt{20701} \approx 143.9, \text{ so}$$

$$\begin{aligned} 144^2 - 20701 &= 35 \text{ (not a perfect square)} \\ 145^2 - 20701 &= 324 = 18^2. \end{aligned}$$

It follows that:

$$\begin{aligned} 145^2 - 18^2 &= 20701 \text{ (1 pt)} \\ (145 - 18)(145 + 18) &= 20701 \end{aligned}$$

Thus, 20701 factored is 127x163.

CIS Quiz 5 Review Questions - Solutions

5) In an RSA system, $n = 391$ and $e = 137$, what is d ?

We need to solve for d in the equation $137d = 1 \pmod{352}$.

So, we must run the Extended Euclidean Algorithm:

$$\begin{aligned} 352 &= 2 \times 137 + 78 \\ 137 &= 1 \times 78 + 59 \\ 78 &= 1 \times 59 + 19 \\ 59 &= 3 \times 19 + 2 \\ 19 &= 9 \times 2 + 1 \\ 2 &= 2 \times 1 \end{aligned}$$

Now, we have:

$$\begin{aligned} 19 - 9 \times 2 &= 1 \\ 19 - 9 \times (59 - 3 \times 19) &= 1 \\ 19 - 9 \times 59 + 27 \times 19 &= 1 \\ 28 \times 19 - 9 \times 59 &= 1 \\ 28 \times (78 - 59) - 9 \times 59 &= 1 \\ 28 \times 78 - 28 \times 59 - 9 \times 59 &= 1 \\ 28 \times 78 - 37 \times 59 &= 1 \\ 28 \times 78 - 37 \times (137 - 78) &= 1 \\ 28 \times 78 - 37 \times 137 + 37 \times 78 &= 1 \\ 65 \times 78 - 37 \times 137 &= 1 \\ 65 \times (352 - 2 \times 137) - 37 \times 137 &= 1 \\ 65 \times 352 - 130 \times 137 - 37 \times 137 &= 1 \\ 65 \times 352 - 167 \times 137 &= 1 \end{aligned}$$

Thus $d = -167 = (352 - 167) = 185 \pmod{352}$.

$d = 185$

6) In a Diffie-Hellman Key Exchange, Alice and Bob agree upon the public keys $p = 17$ and $g = 3$. Alice picks the secret key $a = 4$ and Bob picks the secret key $b = 7$. What value does Alice send Bob? What value does Bob send Alice? What is their shared secret key?

Alice sends Bob $3^4 \pmod{17} = 81 \pmod{17} = 13$.

Bob sends Alice $3^7 \pmod{17} = (27)(27)(3) \pmod{17} = (10)(10)(3) \pmod{17} = 11$.

Their shared key (calculated by Alice) is $11^4 \pmod{17} = (121)(121) \pmod{17} = 4 \pmod{17}$, since $121 = 2 \pmod{17}$.

7) Consider the Elliptic Curve₂₉(3, 11). Let P be the point (8, 5) on this curve and Q be the point (20, 26) on this curve. Determine P + Q.

$$\lambda = \frac{y_q - y_p}{x_q - x_p} = \frac{26 - 5}{20 - 8} \bmod 29 = 21 \times 12^{-1} \bmod 29$$

We must find $12^{-1} \bmod 29$:

$$29 = 2 \times 12 + 5$$

$$12 = 2 \times 5 + 2$$

$$5 = 2 \times 2 + 1$$

$$5 - 2 \times 2 = 1$$

$$5 - 2(12 - 2 \times 5) = 1$$

$$5 \times 5 - 2 \times 12 = 1$$

$$5(29 - 2 \times 12) - 2 \times 12 = 1$$

$$5 \times 29 - 12 \times 12 = 1$$

$$12^{-1} \equiv -12 \equiv 17 \bmod 29$$

Thus, $\lambda = 21 \times 12^{-1} \equiv 21 \times 17 \equiv 357 \equiv 9 \bmod 29$.

$$x = \lambda^2 - x_p - x_q \equiv 9^2 - 8 - 20 \equiv 53 \equiv 24 \pmod{29}$$

$$y = (\lambda(x_p - x) - y_p) \equiv (9(8 - 24) - 5) \equiv (9 \times 13 - 5) \equiv 112 \equiv 25 \pmod{29}$$

Thus, the desired sum is the point (24, 25).

8) Consider the Elliptic Curve₂₉(3, 11). Let P be the point (8, 5) on this curve. Determine 2P.

$$\lambda = \frac{3x_p^2 + a}{2y_p} = \frac{3(8)^2 + 3}{2(5)} = \frac{195}{10} \equiv \frac{21}{10} \bmod 29 = 21 \times 10^{-1} \bmod 29$$

To save some work, we can eyeball that $10^{-1} \equiv 3 \pmod{29}$, since $3 \times 10 = 30$ and $30 \equiv 1 \pmod{29}$.

Thus, we have $\lambda = 21 \times 3 \equiv 63 \equiv 5 \pmod{29}$

Now, we can solve for x and y:

$$x = \lambda^2 - 2x_p \equiv 5^2 - 2(8) \equiv 9 \pmod{29}$$

$$y = (\lambda(x_p - x) - y_p) \equiv (5(8 - 9) - 5) \equiv -10 \equiv 19 \pmod{29}$$

Thus, the desired sum is the point (9, 19).

9) Alice's Public El Gamal keys are $q = 31$, and $\alpha = 11$. Alice's secret key $X_A = 9$. Bob has sent a message to Alice. The ciphertext he has sent to Alice is $C_1 = 3$, $C_2 = 18$. What is the plaintext?

$$K = (C_1)^{X_A} \bmod q \equiv 3^9 \equiv (3^3)^3 \equiv (27)^3 \equiv (-4)^3 \equiv -64 \equiv 29 \pmod{31}$$

$$M = (C_2 K^{-1}) \bmod q$$

Thus, we need to find $29^{-1} \bmod 31$.

$$31 = 1 \times 29 + 2$$

$$29 = 14 \times 2 + 1$$

$$29 - 14 \times 2 = 1$$

$$29 - 14(31 - 29) = 1$$

$$29 - 14 \times 31 + 14 \times 29 = 1$$

$$15 \times 29 - 14 \times 31 = 1$$

Thus, $29^{-1} \equiv 15 \pmod{31}$

$$M = (18 \times 15) \equiv 270 \equiv \underline{22} \pmod{31}$$