Number Theory

Prime numbers \implies Fermat's Thm \implies Euler's Thm \implies Miller-Rabin

\mod, \mod \text{ inverse (already seen)} \implies \text{ Primility Test}

\implies RSA requires the use of 2 large primes +
reason it works is based on Euler's Thm.

* Discrete Log Problem (El Gamal Public Key System)

What is a discrete log? \(\log_2 64 = 6 \)

because \(2^6 = 64 \)

\log \text{ is inverse of the exponent problem.}

Input (Given): Ans, Base
Output: Exponent

New Problem

Input: Ans, Base, Mod
Output: exponent

What's smallest positive int \(x \) that makes this true?

\[5^x \equiv 6 \pmod{11} \]
<table>
<thead>
<tr>
<th>Exp</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ans</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

\[3^x \equiv 6 \pmod{11} \]

\[2^x \equiv 6 \pmod{11} \]

This is the discrete log problem for prime numbers, \(p \), we can calculate the cycle length for each possible base in modular exponentiation. We previously proved that the cycle length, \(c \), for any base \(b \) divides evenly into \(p-1 \).

\(p = 11, \ p - 1 = 10 \), all cycle lengths are either 1, 2, 5 or 10.
Did program for $p = 11$

\[\begin{align*}
\text{len} & = 10 \\
\text{cycle len} & = 5 \\
3, 4, 5, 9 & \phi(5) = 4 \\
\text{cycle len} & = 2 \\
10 & \phi(2) = 1 \\
\text{cycle len} & = 1 \\
1 & \phi(1) = 1
\end{align*} \]

These values have property that they produce each possible non-zero mod value in a reasonably unpredictable order.

Once we know a primitive root exists, then we can prove there are exactly $\phi(p-1)$ of them.

\[2^{10} \equiv 1 \mod 11 \]

and \[2^2 \equiv 4 \mod 11 \]

\[4^5 \equiv (2^2)^5 \equiv 2^{10} \equiv 1 \mod 11 \]
The discrete log problem will be used with \(\text{mod} = \text{prime}, \text{ base} = \text{primitive root} \to \text{each possible ans exists.} \)

Easiest/Slowest alg to solve

\[
\begin{align*}
 & b, a, p \mod \\
 & \text{res} = 1 \\
 & \text{for } (\text{int } i = 0; i < p; i++) \text{ if } \text{(res} = = a) \text{ return } i; \\
 & \text{res} = (\text{res} + b) \mod p; \\
 & \text{run time } O(p + \text{operr})
\end{align*}
\]

An alg that is a little bit faster
let \(n = \lceil \sqrt{p} \rceil \text{ceilings (least int } \geq \sqrt{p}) \)
goal: find integers \(c \) and \(d \) such that

\[
\frac{nc - d}{a} = b \pmod{p}
\]

Imagine \(p = 97 \quad n = 10 \)

\[
\begin{array}{cccc}
 c=1 & d=0,1,2,3 & \ldots & 10 \\
 10-0 & 10-1 & 10-2 & \ldots & 10-10 \\
 a & a & a & \ldots & a \\
 \bar{a} & \bar{a} & \bar{a} & \ldots & \bar{a} \\
 \bar{a} & \bar{a} & \bar{a} & \ldots & \bar{a} \\
 \bar{a} & \bar{a} & \bar{a} & \ldots & \bar{a} \\
 \bar{a} & \bar{a} & \bar{a} & \ldots & \bar{a} \\
 \bar{a} & \bar{a} & \bar{a} & \ldots & \bar{a} \\
 \bar{a} & \bar{a} & \bar{a} & \ldots & \bar{a} \\
 \bar{a} & \bar{a} & \bar{a} & \ldots & \bar{a} \\
 \bar{a} & \bar{a} & \bar{a} & \ldots & \bar{a} \\
 \bar{a} & \bar{a} & \bar{a} & \ldots & \bar{a} \\
 \bar{a} & \bar{a} & \bar{a} & \ldots & \bar{a} \\
\end{array}
\]
1. Calculate a^{nc} for $c = 0, 1, 2, \ldots n$, store answers in a chart.

2. Calculate a^d for $d = 0, 1, 2, \ldots n$.

\[a^d (a^{nc-d}) = (b)^d \mod p \]

\[\Rightarrow a^{nc} = b \cdot a^d \mod p \]

<table>
<thead>
<tr>
<th>TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^c</td>
</tr>
</tbody>
</table>

For each d multiply $b \cdot a^d$ and see if a^{nc} is in the lookup chart.

Step 1 takes $O(\sqrt{p})$ time.

Step 2 takes $O(\sqrt{p})$ time.

$O(\sqrt{p})$