
Fall 2023 CIS 3362 Homework #5: Number Theory Solution 

 

 

1) (5 pts) Without the aid of a computer program, determine the prime factorization of 

2,427,559,200. Show your work. You may do division on a calculator. 

 

Solution 

2,427,559,200 = 100 x 24275592 

 

Now use a calculator to divide out as many copies of 2 as possible from 24275592: 

 

  = 22 x 52 x 23 x 3034449 

 

Noticing that the sum of digits of the large number is divisible by 9, we can divide out 32, and that 

result has a digit sum divisible by 3, so after dividing out all the 3s we have: 

 

= 25 x 52  x 33 x 112387 

 

Continue trial division by primes in increasing order: 

 

= 25 x 33 x 52  x 11 x 10217 =  25 x 33 x 52 x 11 x 17 x 601 

 

Trial division by primes upto 23 shows that 601 must be prime and we can stop. (This is because 

the next prime after 23 is 29 and 292 > 601.) 

 

2) (5 pts) What is φ(2,427,559,200)? 

 

Solution 

φ(2,427,559,200) = φ(25) x φ(33) x φ(52) x φ(11) x φ(17) x φ(601) 

                             = (25 – 24)(33 – 32)(52 – 5)(11 – 1)(17 – 1)(601 – 1) 

                             = 16 x 18 x 20 x 10 x 16 x 600 

                             = 552,960,000 

                             

In prime factorized form, that's 215 x 33 x 54. 

 

3) (5 pts) Use Fermat’s Theorem to calculate the remainder when 127250 is divided by 907? 

 

Solution 

Since 907 is prime and gcd(12, 907) = 1, by Fermat's Theorem, we have 12906 ≡ 1 (mod 907). 

 

127250 = 128(906)+2 = (12906)8122 ≡ 18(144) ≡ 144 (𝑚𝑜𝑑 907) 

 

It follows that the desired remainder is 144. 

 

  



4) (5 pts) Use Euler’s Theorem to calculate the remainder when 7732641 is divided by 26010? 

 

Solution 

26010 = 2601 x 10 = 9 x 289 x 10 = 32 x 172 x 2 x 5 

 

It follows that φ(26010) = φ(2) x φ(32) x φ(5) x φ(172) = (2 – 1)(32 – 3)(5 – 1)(172 – 17) 

             = 6 x 4 x 272 

            = 6528 

 

Since gcd(77, 26010) = 1, due to Euler's Theorem, it follows that 776528 ≡ 1 (mod 26010). 

 

7732641 = 775(6528)+1 = (776528)5771 ≡ 15(77) ≡ 77 (𝑚𝑜𝑑 26010) 

 

It follows that the remainder when 7732641 is divided by 26010 is 77. 

 

5) (10 pts) Show the steps of running the Miller-Rabin algorithm, testing n = 1729 for primality 

with the randomly chosen value of a = 2. Please use a calculator or computer program to calculate 

the modular exponents and just show the result of each squaring/mod operations. 

 

Solution 

n – 1 = 1728 = 26 x 27. (Note: 1728 is twelve cubed, a fact that some of aware of because 1729 is 

the smallest number that can be expressed in 2 different ways as the sum of two cubes. 1729 = 123 

+ 13 = 103 + 93.) Thus, k = 6, m = 27. (Step 1 from the typed up notes.) 

 

2. Pick a = 2 as dictated by the problem. 

 

3. We start with a = 2, m = 27. 227 ≡ 645 (𝑚𝑜𝑑 1729). (This is step 3 from  the typed up notes.) 

 

4. Since the number above isn't 1, we continue the algorithm, repeatedly squaring the previous 

term: 

 

5-6) a) 6452 ≡ 1065 (𝑚𝑜𝑑 1729) 

 b) 10652 ≡ 1 (𝑚𝑜𝑑 1729) 

 c-f) Future steps will all yield a calculation of 1 (mod 1729) 

 

7) We return composite, because we never achieve a value of 1728 mod 1729. 
 

 

 

 

  



6) (10 pts) Trace through the Fermat Factoring algorithm to factor 45,241 as the product of two 

prime numbers. You may use a calculator or computer program to execute each calculation, but 

print out the result of each number being tested as a perfect square. 

 

Solution 

√45241~212.7, thus, we can start our algorithm with x = 213 

 

x  x2 – 45241 Perfect Square? 

213 128 No 

214 555 No 

215 984 No 

216 1415 No 

217 1848 No 

218 2283 No 

219 2720 No 

220 3159 No 

221 3600 Yes (60 x 60) 

 

It follows that 45241 = (221 + 60)(221 – 60) = 281 x 161. 

 

It turns out that 161 is NOT prime. 161 = 7 x 23. 

 

Thus, the full prime factorization of this number is 45241 = 7 x 23 x 281. 

 

Using Fermat Factorization, we split 45241 into two factors (closest to the square root of the 

number), and these are 161 and 281. 

 

Note: Just the two factor split assuming the full chart is accurate will earn full credit. It was not 

necessary to note that 161 was not prime. 

 

  



7) (10 pts) A primitive root, α, of a prime, p, is a value such that when you calculate the remainders 

of α, α2, α3, α4 , ... , αp-1, when divided by p, each number from the set {1, 2, 3, ..., p-1} shows up 

exactly once. Prove that a prime p has exactly φ(p-1) primitive roots. In writing your proof, you 

may assume that at least one primitive root of p exists. (Normally, this is the first part of the proof.) 

(Note: This question is difficult, so don't feel bad if you can't figure it out.) (Note: The solution 

to this can probably be found on the internet, so I'll be looking for original explanations that 

show understanding but aren't identical to the book proofs…ie what a normal person would 

come up with after thinking about the problem on their own) 

 

Solution 

Let α be an arbitrarily chosen primitive root of p.  

Let k be an integer in between 1 and p – 1 such that gcd(k, p – 1) = 1. 

Now consider the value 𝛽 ≡ 𝛼𝑘(𝑚𝑜𝑑 𝑝). Our goal will be to prove that 𝛽 is a primitive root as 

well. 

 

Consider the sequence of values 𝛽, 𝛽2, 𝛽3, … , 𝛽𝑝−1 mod p. These will be equivalent to 

 

𝛼𝑘, 𝛼2𝑘, 𝛼3𝑘, … , 𝑎(𝑝−1)𝑘 

 

mod p, respectively. 

 

We know the last of these is equivalent to 1 (mod p) via Fermat's Theorem. 

 

What we would like to show is that these exponents, when taken mod (p – 1) will all be distinct 

values covering the set {0, 1, 2, …, p – 2}. If we can show that, then we know that the actual list 

of values itself are distinct mod p and that the first time the value of 1 shows up on the list is at the 

very end. 

 

Assume to the contrary, that two values on the list of exponents, k, 2k, 3k, …, (p – 1)k are 

equivalent mod (p – 1). Then there exist distinct integers, i and j, with 1 ≤ i < j ≤ p – 1,  such that 

ki and kj are equivalent mod (p – 1): 

 

𝑘𝑗 ≡ 𝑘𝑖 (𝑚𝑜𝑑 𝑝 − 1) 

𝑘𝑗 − 𝑘𝑖 ≡ 0 (𝑚𝑜𝑑 𝑝 − 1) 

𝑘(𝑗 − 𝑖) ≡ 0 (𝑚𝑜𝑑 𝑝 − 1) 

 

Because gcd(k, p – 1) = 1, it follows that (𝑗 − 𝑖) ≡ 0 (𝑚𝑜𝑑 𝑝 − 1). (This uses a rule that was 

stated in class but not proved. Intuitively, if there are no common factors between k and p – 1, then 

for p – 1 to divide this product, it has to entirely divide into the other part and not k.) 

 

But, recall that 0 < j – i < p – 1. This means that p – 1 can NOT divide the difference between j 

and i, resulting in a contradiction. It follows that the original assumption was incorrect, and that 

each of the exponents to alpha are distinct mod p – 1. 

 

Since α is a primitive root, by definition, this list of values is equivalent to each unique non-zero 

value mod p. Thus, if α is a primitive root, it follows that 𝛽 is as well. Thus, the number of primitive 



roots is at least the number of values k such that gcd(k, p – 1) = 1. By definition of the phi function, 

this is 𝜙(𝑝 − 1).  

 

We must finally also prove that if gcd(k, p – 1) ≠ 1, then 𝛼𝑘 is NOT a primitive root. Once we 

prove this, then we know the count above is accurate and not below the actual answer. (This is the 

only if part of the proof.) Let d = gcd(k, p – 1) > 1.  Also, let 𝑋 =
𝑘

𝑑
. We know that X must be an 

integer by definition of gcd. 

 

Let 𝛽 = 𝛼𝑘. Consider the exponent 
𝑝−1

𝑑
. Since g > 1, this exponent is strictly less than p – 1. Now, 

calculate the following: 

 

𝛽
𝑝−1

𝑑 = 𝛼
𝑘(𝑝−1)

𝑑 = 𝛼𝑋(𝑝−1) ≡ 1 (𝑚𝑜𝑑 𝑝) 

 

This proves that the order of β is less than p – 1. Thus, β is not a primitive root of p. 

 

Thus, we've proved that given one primitive root, α, all other primitive roots must be of the form 

𝛼𝑘, where gcd(k, p – 1) = 1. By definition of the phi function, there are precisely 𝜙(𝑝 − 1) of 

these. 

 

 

  



8) (10 pts) In class, we made a chart, for p = 7, of the different lengths of cycles produced by 

exponentiating each of the possible non-zero mod values, mod 7. We found that two of the values 

(3, 5) have a cycle length of 6, two of the values (2, 4) have a cycle length of 3, 1 value (6) has a 

cycle length of 2, and 1 value (1) has a cycle length of 1. Based on this example, give a 

counting/logical argument proving the sum below, for prime numbers, p: 

 

∑ 𝜙(
𝑝 − 1

𝑑
)

𝑑∈𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑝−1)

= 𝑝 − 1 

 

Solution 

The cycle length of each possible base, by Fermat's theorem, MUST BE a divisor of p – 1. Thus, 

if we were to make a frequency chart of how many bases have each cycle length (as described in 

the problem statement), the sum of those frequencies must necessarily equal p – 1, since there are 

p – 1 bases, 1 through p – 1, to consider.  

 

Thus, what remains to be proven is that for any divisor, d, of p – 1, the number of elements with 

order 
𝑝−1

𝑑
 is exactly 𝜙(

𝑝−1

𝑑
). If we can prove this, then symbolically, the sum on the left will 

represent the number of elements/bases of each different possible cycle length, and since each 

element must appear exactly once in the sum, it would then follow that the sum equals p – 1. 

 

In question 7, we proved the fact specifically for the divisor d = 1. 

 

Now, let's generalize that proof for any divisor d.  

Consider a primitive root, 𝛼, we can generate each possible base mod p by exponentiating it to 

each power from 1 to p – 1. Every one of these values can be represented as 𝛽 = 𝛼𝑘, for some 

integer k in the range 1 to p – 1. Let d = gcd(k, p – 1).  

 

As previously stated in the proof for #7, 𝛽
𝑝−1

𝑑 = 𝛼
𝑘(𝑝−1)

𝑑 = 𝛼𝑋(𝑝−1) ≡ 1 (𝑚𝑜𝑑 𝑝). 

 

From this statement, it follows that 𝛽
𝑝−1

𝑑
(𝑖) ≡ 1 (𝑚𝑜𝑑 𝑝), for each integer in between 1 and d, 

inclusive. Thus, each of these values (there are d of them), have order, 
𝑝−1

𝑑
, because the list of 

values, 𝛽1, 𝛽2, … , 𝛽
𝑝−1

𝑑  are all unique mod p, with the last value equivalent to 1 mod p. (To fully 

prove this, we can do another proof by contradiction rewriting each of these in terms of α, and 

proving that the list of exponents is unique mod (p – 1). 

 

This proof works for each divisor, d, of p – 1. It follows that there are 𝜙(
𝑝−1

𝑑
) bases with an order 

of 
𝑝−1

𝑑
. As previously discussed, this means that the sum on the left adds exactly 1 for each unique 

base modulo p. Thus, the sum must equal exactly p – 1. 

 

 

  



9) (40 pts) Write a program that will take in as input a prime number, p (2 ≤ p < 109) and will 

calculate the sum of the cycle lengths for each possible base, 1 through p-1, inclusive for 

exponentiation mod p. More formally, the input format for the program is as follows: 

 

The first line contains a single integer, n, representing the number of input cases. 

The input cases follow, one per line. Each of these lines has a single integer, p (2 ≤ p < 109), 

representing the input for the case. It is guaranteed that p will be prime. 

 

The output for each test case (on a line by itself) should simply be a single integer equal to the 

value described above. (Note: This answer can be quite a bit larger than 109, so please use a 

long long in C/C++ or long in Java to store the result.) 

 

You may write your program in C, C++, Java or Python. 

 

Sample Input     Sample Output 
4      1 

2      21 

7      77 

13      473 

29 

 

Note: Brute force, where you manually run all cycles will earn ½ credit (20 pts out of 40). 

 

An efficient solution requires a calculation of phi in O(√𝑛) for calculating phi(n) and an overall 

run time of the summation code should be O(𝜏(𝑛)√𝑛), where 𝜏(𝑛) equals the number of divisors 

of n. 

 

There are two attached programs: cyclesumbf.cpp and cyclesum.cpp. The former simply tries 

exponentiating each base until the value of 1 is reached and adds up the requested values. This is 

the intended solution for half credit.  

 

The latter utilizes the fact that the desired value is simply ∑ 𝜙(
𝑝−1

𝑑
)𝑑∈𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑝−1) ×

𝑝−1

𝑑
. This 

directly follows from the result in question 8, where we proved that the number of bases with cycle 

length 
𝑝−1

𝑑
 is 𝜙(

𝑝−1

𝑑
). Basically, if we know for each possible cycle length, how many times it 

occurs, we can just multiply each cycle length by its frequency. 

 

Our solution can simply search for each divisor of p - 1 upto the square root of the input value and 

process divisors in pairs. (For example, if p = 101, and d = 2, process both 100/2 = 50 and 100/50 

= 2 in the same loop iteration.) 

 


