

Fall 2023 CIS 3362 Homework #5: Number Theory Solution

1) (5 pts) Without the aid of a computer program, determine the prime factorization of 2,427,559,200. Show your work. You may do division on a calculator.

Solution

$$2,427,559,200 = 100 \times 24275592$$

Now use a calculator to divide out as many copies of 2 as possible from 24275592:

$$= 2^2 \times 5^2 \times 2^3 \times 3034449$$

Noticing that the sum of digits of the large number is divisible by 9, we can divide out 3^2 , and that result has a digit sum divisible by 3, so after dividing out all the 3s we have:

$$= 2^5 \times 5^2 \times 3^3 \times 112387$$

Continue trial division by primes in increasing order:

$$= 2^5 \times 3^3 \times 5^2 \times 11 \times 10217 = \underline{\underline{2^5 \times 3^3 \times 5^2 \times 11 \times 17 \times 601}}$$

Trial division by primes upto 23 shows that 601 must be prime and we can stop. (This is because the next prime after 23 is 29 and $29^2 > 601$.)

2) (5 pts) What is $\phi(2,427,559,200)$?

Solution

$$\begin{aligned}\phi(2,427,559,200) &= \phi(2^5) \times \phi(3^3) \times \phi(5^2) \times \phi(11) \times \phi(17) \times \phi(601) \\ &= (2^5 - 2^4)(3^3 - 3^2)(5^2 - 5)(11 - 1)(17 - 1)(601 - 1) \\ &= 16 \times 18 \times 20 \times 10 \times 16 \times 600 \\ &= \underline{\underline{552,960,000}}\end{aligned}$$

In prime factorized form, that's $\underline{\underline{2^{15} \times 3^3 \times 5^4}}$.

3) (5 pts) Use Fermat's Theorem to calculate the remainder when 12^{7250} is divided by 907?

Solution

Since 907 is prime and $\gcd(12, 907) = 1$, by Fermat's Theorem, we have $12^{906} \equiv 1 \pmod{907}$.

$$12^{7250} = 12^{8(906)+2} = (12^{906})^8 \times 12^2 \equiv 1^8 \times 144 \equiv 144 \pmod{907}$$

It follows that the desired remainder is 144.

4) (5 pts) Use Euler's Theorem to calculate the remainder when 77^{32641} is divided by 26010?

Solution

$$26010 = 2601 \times 10 = 9 \times 289 \times 10 = 3^2 \times 17^2 \times 2 \times 5$$

$$\begin{aligned} \text{It follows that } \varphi(26010) &= \varphi(2) \times \varphi(3^2) \times \varphi(5) \times \varphi(17^2) = (2-1)(3^2-3)(5-1)(17^2-17) \\ &= 6 \times 4 \times 272 \\ &= 6528 \end{aligned}$$

Since $\gcd(77, 26010) = 1$, due to Euler's Theorem, it follows that $77^{6528} \equiv 1 \pmod{26010}$.

$$77^{32641} = 77^{5(6528)+1} = (77^{6528})^5 77^1 \equiv 1^5 (77) \equiv 77 \pmod{26010}$$

It follows that the remainder when 77^{32641} is divided by 26010 is 77.

5) (10 pts) Show the steps of running the Miller-Rabin algorithm, testing $n = 1729$ for primality with the randomly chosen value of $a = 2$. Please use a calculator or computer program to calculate the modular exponents and just show the result of each squaring/mod operations.

Solution

$n - 1 = 1728 = 2^6 \times 27$. (Note: 1728 is twelve cubed, a fact that some of aware of because 1729 is the smallest number that can be expressed in 2 different ways as the sum of two cubes. $1729 = 12^3 + 1^3 = 10^3 + 9^3$.) Thus, $k = 6$, $m = 27$. (Step 1 from the typed up notes.)

2. Pick $a = 2$ as dictated by the problem.

3. We start with $a = 2$, $m = 27$. $2^{27} \equiv 645 \pmod{1729}$. (This is step 3 from the typed up notes.)

4. Since the number above isn't 1, we continue the algorithm, repeatedly squaring the previous term:

5-6) a) $645^2 \equiv 1065 \pmod{1729}$
b) $1065^2 \equiv 1 \pmod{1729}$
c-f) Future steps will all yield a calculation of 1 $\pmod{1729}$

7) We return composite, because we never achieve a value of 1728 $\pmod{1729}$.

6) (10 pts) Trace through the Fermat Factoring algorithm to factor 45,241 as the product of two prime numbers. You may use a calculator or computer program to execute each calculation, but print out the result of each number being tested as a perfect square.

Solution

$\sqrt{45241} \sim 212.7$, thus, we can start our algorithm with $x = 213$

x	$x^2 - 45241$	Perfect Square?
213	128	No
214	555	No
215	984	No
216	1415	No
217	1848	No
218	2283	No
219	2720	No
220	3159	No
221	3600	Yes (60 x 60)

It follows that $45241 = (221 + 60)(221 - 60) = \underline{\underline{281 \times 161}}$.

It turns out that 161 is NOT prime. $161 = 7 \times 23$.

Thus, the full prime factorization of this number is $45241 = \underline{\underline{7 \times 23 \times 281}}$.

Using Fermat Factorization, we split 45241 into two factors (closest to the square root of the number), and these are 161 and 281.

Note: Just the two factor split assuming the full chart is accurate will earn full credit. It was not necessary to note that 161 was not prime.

7) (10 pts) A primitive root, α , of a prime, p , is a value such that when you calculate the remainders of $\alpha, \alpha^2, \alpha^3, \alpha^4, \dots, \alpha^{p-1}$, when divided by p , each number from the set $\{1, 2, 3, \dots, p-1\}$ shows up exactly once. Prove that a prime p has exactly $\phi(p-1)$ primitive roots. In writing your proof, you may assume that at least one primitive root of p exists. (Normally, this is the first part of the proof.) (Note: This question is difficult, so don't feel bad if you can't figure it out.) **(Note: The solution to this can probably be found on the internet, so I'll be looking for original explanations that show understanding but aren't identical to the book proofs...ie what a normal person would come up with after thinking about the problem on their own)**

Solution

Let α be an arbitrarily chosen primitive root of p .

Let k be an integer in between 1 and $p - 1$ such that $\gcd(k, p - 1) = 1$.

Now consider the value $\beta \equiv \alpha^k \pmod{p}$. Our goal will be to prove that β is a primitive root as well.

Consider the sequence of values $\beta, \beta^2, \beta^3, \dots, \beta^{p-1} \pmod{p}$. These will be equivalent to

$$\alpha^k, \alpha^{2k}, \alpha^{3k}, \dots, \alpha^{(p-1)k}$$

\pmod{p} , respectively.

We know the last of these is equivalent to 1 \pmod{p} via Fermat's Theorem.

What we would like to show is that these exponents, when taken mod $(p - 1)$ will all be distinct values covering the set $\{0, 1, 2, \dots, p - 2\}$. If we can show that, then we know that the actual list of values itself are distinct mod p and that the first time the value of 1 shows up on the list is at the very end.

Assume to the contrary, that two values on the list of exponents, $k, 2k, 3k, \dots, (p - 1)k$ are equivalent mod $(p - 1)$. Then there exist distinct integers, i and j , with $1 \leq i < j \leq p - 1$, such that ki and kj are equivalent mod $(p - 1)$:

$$\begin{aligned} kj &\equiv ki \pmod{p-1} \\ kj - ki &\equiv 0 \pmod{p-1} \\ k(j-i) &\equiv 0 \pmod{p-1} \end{aligned}$$

Because $\gcd(k, p - 1) = 1$, it follows that $(j - i) \equiv 0 \pmod{p - 1}$. (This uses a rule that was stated in class but not proved. Intuitively, if there are no common factors between k and $p - 1$, then for $p - 1$ to divide this product, it has to entirely divide into the other part and not k .)

But, recall that $0 < j - i < p - 1$. This means that $p - 1$ can NOT divide the difference between j and i , resulting in a contradiction. It follows that the original assumption was incorrect, and that each of the exponents to alpha are distinct mod $p - 1$.

Since α is a primitive root, by definition, this list of values is equivalent to each unique non-zero value mod p . Thus, if α is a primitive root, it follows that β is as well. Thus, the number of primitive

roots is at least the number of values k such that $\gcd(k, p - 1) = 1$. By definition of the phi function, this is $\phi(p - 1)$.

We must finally also prove that if $\gcd(k, p - 1) \neq 1$, then α^k is NOT a primitive root. Once we prove this, then we know the count above is accurate and not below the actual answer. (This is the only if part of the proof.) Let $d = \gcd(k, p - 1) > 1$. Also, let $X = \frac{k}{d}$. We know that X must be an integer by definition of gcd.

Let $\beta = \alpha^k$. Consider the exponent $\frac{p-1}{d}$. Since $g > 1$, this exponent is strictly less than $p - 1$. Now, calculate the following:

$$\beta^{\frac{p-1}{d}} = \alpha^{\frac{k(p-1)}{d}} = \alpha^{X(p-1)} \equiv 1 \pmod{p}$$

This proves that the order of β is less than $p - 1$. Thus, β is not a primitive root of p .

Thus, we've proved that given one primitive root, α , all other primitive roots must be of the form α^k , where $\gcd(k, p - 1) = 1$. By definition of the phi function, there are precisely $\phi(p - 1)$ of these.

8) (10 pts) In class, we made a chart, for $p = 7$, of the different lengths of cycles produced by exponentiating each of the possible non-zero mod values, mod 7. We found that two of the values (3, 5) have a cycle length of 6, two of the values (2, 4) have a cycle length of 3, 1 value (6) has a cycle length of 2, and 1 value (1) has a cycle length of 1. Based on this example, give a counting/logical argument proving the sum below, for prime numbers, p :

$$\sum_{d \in \text{Divisor}(p-1)} \phi\left(\frac{p-1}{d}\right) = p-1$$

Solution

The cycle length of each possible base, by Fermat's theorem, **MUST BE** a divisor of $p-1$. Thus, if we were to make a frequency chart of how many bases have each cycle length (as described in the problem statement), the sum of those frequencies must necessarily equal $p-1$, since there are $p-1$ bases, 1 through $p-1$, to consider.

Thus, what remains to be proven is that for any divisor, d , of $p-1$, the number of elements with order $\frac{p-1}{d}$ is exactly $\phi\left(\frac{p-1}{d}\right)$. If we can prove this, then symbolically, the sum on the left will represent the number of elements/bases of each different possible cycle length, and since each element must appear exactly once in the sum, it would then follow that the sum equals $p-1$.

In question 7, we proved the fact specifically for the divisor $d = 1$.

Now, let's generalize that proof for any divisor d .

Consider a primitive root, α , we can generate each possible base mod p by exponentiating it to each power from 1 to $p-1$. Every one of these values can be represented as $\beta = \alpha^k$, for some integer k in the range 1 to $p-1$. Let $d = \gcd(k, p-1)$.

As previously stated in the proof for #7, $\beta^{\frac{p-1}{d}} = \alpha^{\frac{k(p-1)}{d}} = \alpha^{k(p-1)} \equiv 1 \pmod{p}$.

From this statement, it follows that $\beta^{\frac{p-1}{d}(i)} \equiv 1 \pmod{p}$, for each integer i between 1 and d , inclusive. Thus, each of these values (there are d of them), have order $\frac{p-1}{d}$, because the list of values, $\beta^1, \beta^2, \dots, \beta^{\frac{p-1}{d}}$ are all unique mod p , with the last value equivalent to 1 mod p . (To fully prove this, we can do another proof by contradiction rewriting each of these in terms of α , and proving that the list of exponents is unique mod $(p-1)$).

This proof works for each divisor, d , of $p-1$. It follows that there are $\phi\left(\frac{p-1}{d}\right)$ bases with an order of $\frac{p-1}{d}$. As previously discussed, this means that the sum on the left adds exactly 1 for each unique base modulo p . Thus, the sum must equal exactly $p-1$.

9) (40 pts) Write a program that will take in as input a prime number, p ($2 \leq p < 10^9$) and will calculate the **sum of the cycle lengths for each possible base, 1 through $p-1$, inclusive for exponentiation mod p** . More formally, the input format for the program is as follows:

The first line contains a single integer, n , representing the number of input cases.

The input cases follow, one per line. Each of these lines has a single integer, p ($2 \leq p < 10^9$), representing the input for the case. It is guaranteed that p will be prime.

The output for each test case (on a line by itself) should simply be a single integer equal to the value described above. (**Note: This answer can be quite a bit larger than 10^9 , so please use a long long in C/C++ or long in Java to store the result.**)

You may write your program in C, C++, Java or Python.

<u>Sample Input</u>	<u>Sample Output</u>
4	1
2	21
7	77
13	473
29	

Note: Brute force, where you manually run all cycles will earn 1/2 credit (20 pts out of 40).

An efficient solution requires a calculation of phi in $O(\sqrt{n})$ for calculating $\phi(n)$ and an overall run time of the summation code should be $O(\tau(n)\sqrt{n})$, where $\tau(n)$ equals the number of divisors of n .

There are two attached programs: `cyclesumbf.cpp` and `cyclesum.cpp`. The former simply tries exponentiating each base until the value of 1 is reached and adds up the requested values. This is the intended solution for half credit.

The latter utilizes the fact that the desired value is simply $\sum_{d \in \text{Divisor}(p-1)} \phi\left(\frac{p-1}{d}\right) \times \frac{p-1}{d}$. This directly follows from the result in question 8, where we proved that the number of bases with cycle length $\frac{p-1}{d}$ is $\phi\left(\frac{p-1}{d}\right)$. Basically, if we know for each possible cycle length, how many times it occurs, we can just multiply each cycle length by its frequency.

Our solution can simply search for each divisor of $p - 1$ upto the square root of the input value and process divisors in pairs. (For example, if $p = 101$, and $d = 2$, process both $100/2 = 50$ and $100/50 = 2$ in the same loop iteration.)