

Fall 2023 CIS 3362 Homework #5 Grading Criteria

- 1) 5 pts – give full credit if correct, subtract 1 pt for each error, cap at 0.
- 2) 5 pts – give full credit if correct, subtract 1 pt for each error, cap at 0.
- 3) 5 pts – 1 pt stating Fermat, 2 pts to rewrite exponent, 2 pts to get to correct answer.
- 4) 5 pts – 2 pts phi calculation, 2 pts to rewrite exponent, 1 pt final answer.
- 5) 10 pts –
 - 2 pts stating that $k = 6$ and $m = 27$ from step 1.
 - 3 pts – correct calculation for $2^{27} = 645 \bmod 1729$ shown
 - 3 pts - correct calculation for $645^2 = 1065 \bmod 1729$
 - 2 pts - correct calculation for $1065^2 = 1 \bmod 1729$ and concluding it's composite
- 6) 10 pts –
 - 2 pts for starting chart at $x = 213$.
 - 5 pts for the rows on the chart, $\frac{1}{2}$ pt off round down if a row is incorrect
 - 3 pts to use last row of chart to get a factorization (just 161×281 is needed)
- 7) 10 pts –
 - 8 pts for proving that if $\gcd(k, p - 1) = 1$, then α^k is also a primitive root
 - 8 pt breakdown:
 - 1 pt – starting with assume primitive root alpha (or whatever)
 - 2 pts – considering raising alpha to a power k as described above
 - 2 pts – looking at exponents of alpha
 - 3 pts - completing proof by contradiction
 - 2 pts for proving if $\gcd(k, p - 1) \neq 1$, then α^k is not a primitive root.

Note: other ways to do this, so if you aren't sure let me grade it.

- 8) 10 pts -
 - 4 pts for making the observation that each base is counted exactly once In the sum on the left without proof.
 - 6 pts for proving that if $\gcd(k, p - 1) = d$, then the order of α^k is $\frac{p-1}{d}$.

Note: other ways to do this, so if you aren't sure let me grade it.

- 9) 40 pts –
 - There are two test cases `cycle_small.in` and `cycle_large.in`
 - Automatic 20/40 if `cycle_small` works but `cycle_large` doesn't.
 - Automatic 40/40 if `cycle_large` works.
 - Time limit = 2 seconds

Partial credit for incorrect solutions:

If a quick fix fixes either case, then just take off for the error what

you think is appropriate.

If there's an overflow error affecting answers: -5

Partial positive credit for slow solution

2 pts for processing cases in main

3 pts for looping through all bases

5 pts for trying to exponentiate each base

5 pts for keeping a counter and adding to it

Partial positive credit for fast solution

5 pts – attempted own phi function

5 pts – identified each prime divisor in phi function

5 pts – tried to use each prime divisor appropriately in phi function

10 pts – theoretically summing up correct terms ($d * \phi(d)$ for appropriate d)

5 pts – runs to only the square root.