For questions 1 – 3, decode each message. The techniques used to encrypt the messages are given in parentheses right before the ciphertext. In your write-up, explain the process you used to decrypt and include any code you might have used as an aid.

Please do NOT use websites that automatically solve ciphers as most of your grade will be based on your description of the decryption process and original code you include in your write up.

1) (shift)

```python
ftueeftqnussqefftueoxmeetmeghqdnqqz
```

We will find the plaintext by attempting each of the 26 possible decryption shifts, printing out what the plaintext would be in each case, and eyeballing which one of the messages makes sense.

Here is a python program that does the task:

```python
cipher1 = "ftueeftqnussqefftueoxmeetmeghqdnqqz"
cipher2 = "kbzamghppxatoxhgermphmlahixyneerbybgwtmabkwhh"  
for key in range(26):
    print(key, end=": ")
    # Put either cipher1 or cipher2 here, as needed.
    for x in cipher1:
        # Subtract the key...in other languages we would have to add 26
        # so mod works, but in python it should work without it.
        plain = (ord(x)-ord('a') - key + 26)%26
        print(chr(plain+ord('a')), end="")
    # Go to next line.
    print()
```

The output at line 12, for key = 12 is:

```
12: thisisthebiggestthisclasshaseverbeen
```

Cleaning this up, we get: “This is the biggest this class has ever been.” The encryption key was 12. (We can also think of this as adding 14 to decrypt instead of subtracting 12.)
2) (shift)

kbzamghppxatoxhgermphmtlahixyneerbybgwtmabkwlhhg

Using the same program as above, but substituting cipher2 for cipher1, we find the line associated with key = 19 is

19: rightnowwehaveonlytwotashopefullyifindathirdsoon

Cleaning this up we get: “Right now we have only two Tas. Hopefully I find a third soon.”
The encryption key is 19. (We can also think of this as adding 7 to decrypt.)

3) (affine)

sibuovezdgbdfmtuqdwmnhmrgrwxuxagsyrgwdmtuqdwmnhmfeobgszdmmroifggnowmuzxfsfudfgsqfdog

For this one, we need to cycle through all possible Affine keys, trying all 26 integers from 0 to 25 for b and all of the 12 integers in the set \{1,3,5,7,9,11,15,19,21,23,25\} for a. This list is small enough, we can just hard code it. Alternatively, we can write or call a built in gcd function to screen out invalid values of a via (if gcd(a, 26) == 1…)

It seems tedious to look at all outputs, so we’ll screen the potential output for the words “the” and “and” and only print out the results that have at least one of these words.

We will cycle through the decryption keys. At the very end of the program, I will use the decryption keys to print out the original encryption keys. (I’ll take the math process by hand and code it up, just using a chart of modular inverses for now.)

cipher = "sibuovezdgbdfmtuqdwmnhmrgrwxuxagsyrgwdmtuqdwmnhmfeobgszdmmroifggnowmuzxfsfudfgsqfdog"

modinv[x] is the mod inverse of x mod 26 if it exists, -1 otherwise.
modinv = [-1,1,-1,9,-1,21,-1,15,-1,19,-1,-l,-1,7,-l,13,-l,11,-l,5,-l,17,-l,25]

Possible values of a.
aList = [1,3,5,7,9,11,15,17,19,21,23,25]

Try all.
for a in aList:
 for b in range(26):
 plain = ""
 # Just append to plain.
 for x in cipher:
 numX = ord(x) - ord('a')
 p = (a*numX + b)%26
letP = chr(p+ord('a'))
plain = plain + letP

Look for the and and.
if "the" in plain or "and" in plain:
 # Print possible decryption keys and potential message
 print(a,b,plain)
 # Here is the math to print out the corresponding encryption
 keys.
 print("encryption keys are a=",modinv[a]," b=",(modinv[a]*(26-b))%26, sep="")

Here is the output generated by the program:

7 24
ucfispartofthebigtwelvenowdoidyouknowthebigtwelvehasfourteenschoolsweirdhuhithoughtso
decryption keys are a=15 b=4
15 6
qwvuijorzsvdefumzyethebsynungsqcbzyzdefumzyethedoivsqrzeebiwdsstiyeurndqduzsmdzis
decryption keys are a=7 b=10

We can see from this that the decryption keys were definitely a = 7, b = 24 and the plaintext is:

UCF is part of the Big Twelve now. Did you know the Big Twelve has fourteen schools? Weird, huh? I thought so.

The corresponding encryption keys were a = 15 and b = 4.

4) Using the affine cipher with encryption keys a = 11 and b = 8, encrypt the following plaintext:

welcometocryptographyclasshopeyoufindbigprizeswhiledoingyourhomework

Here is the program (basically the one above with the a and b loops removed) to generate the ciphertext:

Question 4 here.
plain = "welcometocryptographyclasshopeyoufindbigprizeswhiledoingyourhomework"

Just encrypt with hard-coded key given.
for x in plain:
 numX = ord(x) - ord('a')
 c = (11*numX + 8)%26
 print(chr(c+ord('a')),end="")
print()

The corresponding output was:
qazegkajgenmrjgwnirhmeziyyhgramulsptswrnxayqhsapgsvwmunhgkaqgn