
Group 1 
AREA A: 
 
Substitution 
 
To encrypt: Create a random alphabet of letters and rearrange plaintext according to those 
letters. Must be a one-to-one relationship. 
To decrypt: Use frequency analysis to find a pattern and try to make words based off the 
frequency analysis. 
 
Example (*important* must be one-to-one: 
A → D 
B → B 
C → A 
D → C 
 
AABD would encrypt to DDBC 
 
Affine Cipher 
 
In order to encrypt using the Affine cipher, you need two values, a and b. 
A must be 1,3,5,7,9,11,15,17,19,21,23, or 25 while B can be any positive integer between 0-26 
Once you have these two values, you can encrypt your message using the formula 
 
E(x) = , where m is the size of the alphabet (usually 26) and a & b are values thatx  mod ma + b  
are defined in the paragraph above. 
The decryption algorithm is  
D(x) = , where m is the size of the alphabet (usually 26) and a & b are valuesa (x ) mod m−1 − b   
that are defined in the paragraph above. 
 
Encryption: The plaintext ‘KNIGHTS’ translates to the ciphertext ‘WPSODBM’ when using a A 
value of 15 and a B value of 2. 
Decryption: Use the decryption algorithm and find the mod inverse in order to decrypt Affine.  
 
 
Shift Cipher 
 
(AKA Caesar shift cipher) 
Note: For any shift cipher, it is important to know the size of your alphabet and the size of the 
shift of each letter. Most of the time the size is 26, but it could be 36 if the numbers ‘0’ - ‘9’ are 
included. 
 



Example: 
Let us use an alphanumeric alphabet of the letters ‘A’ through ‘Z’ and the numbers ‘0’ - 

‘9’ 
Write out this alphabet somewhere to make encryption  & decryption simple. 
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 
For encryption: Shift n spaces to the LEFT, where n = the number of spaces to shift 
For decryption: Shift n spaces to the RIGHT, where n = the number of spaces to shift 
 
Example: Encrypt ‘CIS3362’ with a shift size of 12. 

In this case, the encrypted ciphertext is ‘OU4FFIE’ 
Decryption Example: Decrypt the ciphertext ‘5YFYAZ2’ with a shift size of 12 

The Plaintext is the phrase ‘HARAMBE’ 
 
Alternatively, the shift cipher can be encrypted and decrypted using the formula 
E(x) = (x+n) mod s, where x is the letter to be encrypted, n is the shift size and s is the alphabet 
size (usually 26) 
D(x) = (x-n) mod s,  where x is the letter to be decrypted n is the shift size and s is the alphabet 
size (usually 26) 
 
 
Euclidean Algorithm 
Recall​: GCD(A,B) = largest integer that divides both A and B 
 

● If A = 0, 
then GCD(A,B) = B 
since GCD(A,0) = A 

● If B = 0, 
then GCD(A,B) = B 
since GCD(0,B) = B 

● Write A in quotient remainder form (A = B*Q + R) 
o ​   ​Find GCD(B,R) using the Euclidean Algorithm since GCD(A,B) = GCD(B,R) 

Example​: (refer back to Week 01 – class notes)  
Given: n = 26 , a = 7 
26 = 7(3) + 5 gcd(26,7) = gcd(7,5) 
7 = 5(1) + 2 gcd(7,5) = gcd(5,2) 
5 = 2(2) + 1 gcd(5,2) = gcd(2,1) 
2 = 1(2) + 0 
 
Extended Euclidean Algorithm 
Take the last step of the algorithm to substitute. 
1.)​    ​Rearrange each of the equations to equal to the remainders. 
2.)​    ​Using those remainders, that is what you will substitute in. 
Example​: (using previous example.. continuation) 



Step 1: 
5 = 2(2) + 1 à 1 = 5 – 2(2) 
7 = 5(1) + 2 à 2 = 7 – 5(1) 
26 = 7(3) + 5 à 5 = 26 – 7(3) 
 
Step 2: 
1 = 5 – 2(2)  
1 = 5 – (​7 – 5(1)​)(2) 
   = 5 – 2(7)+ 5(2) 
   = 5(3) – 2(7) 
1 = (​26 – 7(3)​)(3) – 2(7) 
   = 26(3) – 7(9) – 2(7) 
1 = 26(3) – 7(11) mod 26 <-- remember that we are mod 26 because n is 26 
1 mod 26 = -11(7) <-- recall that -11 mod inverse is 15 
15*7 = 1 mod 26 
Inverse 7 = 15 mod 26 
  
 
AREA B: 
 
Vigenere 
 

Encryption: 
1. Choose a keyword 
2. Determine numerical values of letters in keyword and plaintext (A - Z = 0 - 25) 
3. Line up plaintext and keyword, repeating the keyword until it matches the length of the 

plaintext 
4. Add numerical values to retrieve values of ciphertext 
5. Mod 26 to convert to values in the range 0 - 25 
6. Convert numerical values to alphabetical to get ciphertext 

 
Example (Fall 2016, Exam 1, Question 5): 
Encrypt the plaintext “WEAREWORKING” using the Vigenere cipher and the keyword  
“HOUSE” 

 
W   E   A   R   E   W   O   R   K    I   N   G (plaintext) 
22   4   0   17  4   22  14  17 10   8  13  6 (plaintext values) 
H   O   U   S    E   H   O   U   S   E   H   O (keyword - repeated) 

+ 7   14  20  18   4   7  14  20  18   4   7  14 (keyword values) 
29 18  20  35   8  29  28 37  28  12 20  20 mod 26 
 ​3  18  20   9    8   3    2  11   2   12  20 20 (ciphertext values) 
 D   S   U    J    I   D   C   L    C    M  U  U (ciphertext) 

 



ANSWER: 
DSUJIDCLCMUU 

 
 

Decryption: 
Decryption is same process as encryption, except you subtract the values of the  
keyword from the values of the ciphertext to get the plaintext. 
So to get the plaintext value of the first letter in the example above: 
‘D’ = 3, subtract ‘H’ = 7, (3 - 7 = - 4), mod 26 gives 22, which translates to ‘W’ 
 

 
Index of Coincidence 
 

 
Index of coincidence is used to find the probability of randomly selecting two of the same items 
from a list.  

n(n−1)

(f −1)∑
25

i=0
fi i

 
Where f is the frequency of each item in the list and n is the number of items in the list. The IC of 
most english text should be at or around .0618, and lower for any random letter substitution. 
EXAMPLE 
Determine the index of coincidence for the following set of 

letters: 
10 As, 25 Bs, 25 Cs, 40 Ds. 
 

CI = 100 99*
(10 9)+(25 24)+(25 24)+(40 39)* * * *  

 

CI = 9900
90+600+600+1560  

C  I = 1
110 + 2

33 + 2
33 + 26

165 = 1
110 + 46

165 = 96
330 = 66

19  
    
 
 
 
 
 
 
 



Mututal Index of Coincidence 
 
Given two sets of item, what is the probability that an item chosen from the first set will equal an 
item chosen from the second second set.  

m n*

g∑
25

i=0
fi* i

 
 
Where f is the frequency of the item in the first set, g is the frequency of the item in the second 
set, m is the total number of items in the first set, and n is the total number of items in the 
second set.  
EXAMPLE 
 
Set A = 10As, 20Bs, 15Cs, 25Ds 
SetB = 5As. 25Bs, 10Cs, 10Ds 
 

IC(A, ) M B = 70 50*
(10 5)+(20 25)+(15 10)+(25 10)* * * *  

IC(A, )  M B = 3500
50+500+150+250 = 70

1+10+3+5 = 70
19  









The Enigma machine was used by Nazi Germany to send enciphered messages during World 

War II. It contained a series of rotors (usually three out of a possible five to choose from) and 

when one presses a letter on the keyboard, the stepping mechanism would move the rightmost 

rotor by one twenty-sixth of a full rotation. When that rotor does a full rotation, it kicks the next 

rotor one place and the right rotor keeps going. Eventually the middle rotor (if there’s three 

rotors) does a full turn and it will kick the left rotor one place. The idea is similar to the hands on 

a clock. Imagine an hour hand, a minute hand, and a second hand. So then, there’s a fast rotor, 

a middle rotor, and a slow rotor. 

 

To encrypt a message, when one presses a key, the enciphered letter that corresponds to it 

lights up. Inside the Enigma, the key press steps the rotors and the wires located conveniently 

inside the rotors connect the battery to a different bulb. 

 

For decrypting some ciphertext, one would need to know the initial starting position of the rotors 

when the message was encrypted, this concept is similar to an initialization vector in modern 

cryptography systems. The initial rotor position was usually transmitted just before the 

ciphertext, usually after having been enciphered. Finger wheels on each rotor protruded through 

the lid, allowing the operator to tune the rotors to the exact position. 

 

Adding an extra level of scrambling, at the front of the Enigma is a plugboard. There were ten 

wires, each connecting two letters into a pair. So if Q was plugged into E, those two letters 

would swap over and when an operator presses E, the signal is diverted to Q before entering 

the rotors to be scrambled. 

 

One of the conceptual flaws in the Enigma was the reversal rotor, called the reflector, ensured 

that encryption was the same as decryption. It also meant that no letter ever encrypted to itself 

and this was subsequently exploited by codebreakers. 

 

Working on the combinations of settings: 

 

Rotors: 5 x 4 x 3 = 60 ways we can put in 3 rotors from a choice of 5 

 

Starting positions: 26 x 26 x 26 = 17576 

 

Plugboard: 26! = number of ways to arrange the 26 letters of the alphabet 

 

We don’t want the combination of 26 letters, we only want to make 10 pairs. That leaves 6 

letters left over which we don’t care about. Since we don’t care about them, we can divide by 6! 

There are 10 pairs, since we don’t care about the order, we can divide by 10! 

From the 10 pairs, each pair is one distinct combination. Two pairs, AB and BA are the same 

pair. 

Hence: 

Plugboard = 26! / (6! x 10! x 2^10) 

  



  

Total number of ways to set the Enigma = plugboard x starting positions x rotor combinations 

= nearly 159 quintillion settings 

 

 

Hill Cipher 

The Hill Cipher uses matrix multiplication to substitute sets of letters in a message with a key 

being an NxN matrix. 

If there is a 2x2 key such as  

K=(3, 6) 

    (4, 7) 

And the plain text is PAPERS. The plain text will be split into pairs for multiplication with the key 

matrix. If the plain text is PAPER a padding letter should be added to make complete pairs 

PAPERX 

When doing the matrix multiplication each answer should be modulo 26 to get a number that 

can be associated to the ciphertext letter. 

Using the key K and the plain text PAPERS the ciphertext is TIRKDM found by 

(3, 6) (P) = (3, 6) (15) = (3 * 15 + 6 * 0) = 45 % 26 = 19 = T 

(4, 7) (A) = (4, 7) (0)   = (4 * 15 + 7 * 0) = 60 % 26 = 8 = I 

 

This is repeated for every pair of letters till all plaintext is encrypted. 

 

To decrypt we need K inverse 

To find this we can use the formula [ ( ad - bc ) % 26 ] [ d, -b] 

        [ -c, a] 

So to find the inverse of K  

( 3 * 7 - 6 * 4 ) % 26 = -3 % 26 = 17 

 

17 [ 7, -6] = [ 119, -102 ]        = [ 15, 2 ] 

    [ -4, 3] =  [  -68, 51 ]    %26 = [ 10, 25 ] 

 

To decrypt use K inverse as K 

[ 15, 2 ]   [19] mod 26 = P 

[ 10, 25 ] [8]  mod 26  = A 

 

With the english alphabet Hill cipher has a security of 26 raised to the 4th. 

 

A test example is : there is a Key  

K =( 6, 5 ) 

     (7, 11)  with a ciphertext “MEQJ” What is the corresponding plaintext? 

 

To find the plaintext we will first need the inverse key. 

( 6 * 11 - 5 * 7 ) = 31 mod 26 = 5 

 



5 [ 11 -5 ] = [ 55 , -25] mod 26 = [ 3 , 1 ] 

  [ -7, 6 ]  = [ -35, 30 ] mod 26 = [17 , 4 ] = inverse K 

 M = 12 E = 4 Q = 16 J = 9 

 

(3, 1) (12) = (3 * 12 + 1 * 4) = 40 % 26 = 14 = O 

(17, 4) (4)   = (17 * 12 + 4 * 4) = 220 % 26 = 12 = M 

(3, 1) (16) = (3 * 16 + 1 * 9) = 57 % 26 = 5 = F 

(17, 4) (9)   = (17 * 16 + 4 * 9) = 308 % 26 = 22 = W 

 

So the plaintext is “OMFW” 



 

DES 

 

The 32-bit input is first put through the expansion box to become 48 bit. This new value is 

XORed with the key, ki.  The resulting value is put through the first s-box and becomes a 32-bit 

value again.  This new value is then put through the permutation matrix, P.   

 

How to do S-box problems 

 Convert hex to binary 

 Divide into 6 bits blocks 

 First and last bit of block are used to determine row of s-box 

 Middle four bits are used to determine column of s-box 

 Convert number to hex 

How to do E-box problems 

 Convert the hex input into binary 

 Following the order in the E-box fill in each binary digit (there will be duplicated bits) 

 Once all 64 bits of output have been generated, convert back into hex 

How to do permutation-box problems 

 Convert the hex input into binary 

 Reorder the binary digits according to the initial permutation (ip) table 

 Convert the binary output back into hex 

 

Sample problems from old exams 

For the problems without answers, most answers can be found in past exam solution  

manuals.  Problems are listed so that you will know what type of DES questions the  

professor normally asks so that you can make sure you know how to do all problem  

types. 

 

2) (4 pts) If the input in DES to S-box 5 is 001111, what is the output? 

 01 - 1 

 0111 - 7 

 Row 1, Column 7 

 0001 hex 

 1 decimal 

 

3) (8 pts) The first part of the function F in a round of DES expands the 32-bit input (from the 

right half of the previous round) to 48 bits. If this input, in HEX to the function F is 7DA839B2, 

what are the last 8 bits of output right after this value is processed by the Expansion 

Permutation E? 

 

 

  



 

 

4) (10 pts) Without examining all entries in the 16 round key schedule of DES, determine 

whether or not each number (which represents a bit location in the original key in each of the 16 

boxes labeled "Round 1" through "Round 16") appears the exact same number of times 

collectively in the 16 boxes. (As an example, 10 appears in round except rounds 4, 12 and 14, 

so it appears 13 times.) Give proof of your answer. 

 

1) (6 pts) The input into S-box 6 in DES is 100110. What is the output, expressed in decimal (a 

single value in between 0 and 15, inclusive)? 

 

2) (8 pts) In the middle of a round of DES, the input to the P array is 3D91AB75, in hexadecimal. 

What is the corresponding output from the P array, expressed in hexadecimal?  

 

1) (16 pts) If the input to the S-boxes is 69E4 CF08 3B52, in hex, what is the output? 

 

 



 

6) (10 pts) Let a DES key with parity bits expressed in HEX be BF 2C 57 92 DA 76 38 E5. 

Determine the first ten bits of the round 3 key.

 
 

4) (10 pts) If the 48 bit input to the S-boxes in DES is 3A29B1234FE6, what is the 32 bit output, 

expressed in hexadecimal? Put a box around your final answer 



 

 

Area F: AES 

For 128-bit AES, the algorithm runs 10 rounds. For 192-bit AES, it runs 12 rounds. For 

256-bit AES, it runs 14 rounds. Only the 128-bit AES will be discussed here in detail. 

  

Assume that we have a block of 128 bits, split into 16 bytes, labeled a0,0, a1,0, a2,0, a3,0, 

a0,1, a1,1, a2,1, a3,1, a0,2, a1,2, a2,2, a3,2, a0,3, a1,3, a2,3, and a3,3. You can visualize these 16 

bytes filling up four columns of four bytes, with the first four elements in the first column, 

the second four elements in the second column, etc. 

 

 

a0,0 a0,1 a0,2 a0,3 

a1,0 a1,1 a1,2 a1,3 

a2,0 a2,1 a2,2 a2,3 

a3,0 a3,1 a3,2 a3,3 

 

 

The following is repeated for 10 rounds: 

 

 

 

Substitute bytes - For each of the sixteen bytes, look up their substitute in the S-box 

substitution chart, creating the new state matrix b0,0, b1,0, b2,0, b3,0, b0,1, b1,1, b2,1, b3,1, b0,2, b1,2, 

b2,2, b3,2, b0,3, b1,3, b2,3, and b3,3. The first character in the byte refers to the row in the S-box and 

the second character in the byte refers to the column.  

 

Example: 

 

A1 03 98 B3 

C4 D9 03 02 

44 54 32 FE 

E3 3D 7F 2A 

 

 

becomes... 

 

32 7B 46 6D 

1C 35 7B 77 

1B 20 23 BB 

11 27 D2 E5 

 



 

 

 

after looking at the given S-box for AES: 

http://www.cs.ucf.edu/courses/cis3362/fall2016/refsheets/AES-Tables.pdf 

 

When decrypting, we use the inverse S-box, also given in the link above. The process is the 

same as encryption. 

 

---------------------------------------------------------------------------------------------------------------------------- 

 

 

Add Round Key - Key Expansion 

 

Pseudocode  

 

KeyExpansion(byte key[16], word w[44]) { 

  

  word temp; 

  

  for (i=0; i<4; i++) 

 w[i] = (key[4i], key[4i+1], key[4i+2], key[4i+3]); 

  

  for (i=4; i<44; i++) { 

 temp = w[i-1]; 

 if (i%4 == 0) 

        temp = SubWord(RotWord(temp)) XOR Rcon[i/4]; 

 w[i] = w[i-4] XOR temp; 

  } 

} 

 

Steps with examples: 

Scenario:  Let the round 3 key in AES be 01234567 89ABCDEF FEDBCA98 76543210 in hex.  

What will the first four bytes of the round 4 key be, represented in hex? 

 

● Set temp based on first 8 bits of round key from the previous round: 

○ Temp = 76543210 

● Complete a left cyclic rotation (left shift of 2 bits): 

○ rotWord(temp) = 54321076 

● Complete s-box substitution (s-boxes given on reference sheet) 

○ subWord(rotWord[temp]) = 2023CA38 

●  Get rcon[i] from table (i/4,if necessary) and pad with 0, where i is equal to what round 

you are currently on : 

○ i = 4 ==04000000 

● Perform XOR operation on previous 2 lines, in this case 2023CA30 and 04000000.  The 

result will be set as your new temp: 

http://www.cs.ucf.edu/courses/cis3362/fall2016/refsheets/AES-Tables.pdf


 

 

○ Temp = 2023CA38⊕ 04000000 = 2423CA38 

● Take the last 8 bits (w[i-4]): 

○ 01234567 

● And XOR with temp to get the final answer: 

○ 2423CA38 ⊕01234567 = 25008F5F 

Example #2 

Scenario: Consider the AES key schedule where we have  

W[20] = 01234567 

W[23] = 89abcdef 

Expressed in hex.  Calculate w[24]. 

 

Temp = 89abcdef 

rotWord(temp) = abcdef89 

subWord(rotWord[temp]) = 62bddfa7 

rcon[24/4] = 20000000 

XOR = 42bddfa7 

W[i-4] = 01234567 

XOR = 439e9ac0 - Final Answer 

 

---------------------------------------------------------------------------------------------------------------------------- 

 

ShiftRows Transformation - Arranges the state in a matrix and performs a circular shift for  

each row 

Ezpz example: we have a 4x4 matrix arranged with bytes 1 2 3  … 16, and the matrix is 

formed vertically top down but shifted horizontally 

1   5   9    13 

2   6   10   14 

 

3   7   11   15 

4    8   12   16  Each row is shifted to the right based on the row #, starting with 0  

SO NEW MATRIX BECOMES 

1   5    9   13    (shifted 0) 

14   2   6   10 (shifted 1) 

11  15   3   7 (shifted 2)   

8   12  16   4 (shifted 3)     http://www.adamberent.com/documents/AESbyExample.pdf 

 

---------------------------------------------------------------------------------------------------------------------------- 

 

MixColumns Transformation: For mixColumns place the standard matrix first and then the 

data matrix. Select the needed row from the standard matrix and select the column needed from 

the data matrix. In case of row 4 column 1, take the 4th row of the standard matrix, take the first 

column of the data matrix and do the following: 

 



 

 

The leftmost element times the top element, second from left times second from top, and so on. 

Convert all hex to binary. Multiplying by 1 will leave the same value. To multiply by 2 add a zero 

at the end, if the leftmost bit is zero you are done (ignore the leftmost zero), if the leftmost bit is 

1, remove it and xor the rest by 11011 (always the same), the result of the xor will be the 

answer. To multiply by 3, take the binary and multiply by 1, then take the same binary and 

multiply by 2, xor the results of both operations to get the needed binary. In order to get the final 

result take all 4 results from the computations above and xor them. Convert the final binary back 

to hex. 

 

Example on the following page: 



 

 

 
   

 

 

 



RSA 

 

RSA is one of the first practical public-key cryptosystems and is widely used for secure data 

transmission. In such a cryptosystem, the encryption key is public and differs from the decryption 

key which is kept secret. In RSA, this asymmetry is based on the practical difficulty of factoring the 

product of two large prime numbers, the factoring problem. RSA is made of the initial letters of the 

surnames of Ron Rivest, Adi Shamir, and Leonard Adleman, who first publicly described the 

algorithm in 1977. Clifford Cocks, an English mathematician working for the UK intelligence agency 

GCHQ, had developed an equivalent system in 1973, but it was not declassified until 1997.
[1] 

A user of RSA creates and then publishes a public key based on two large prime numbers, 

along with an auxiliary value. The prime numbers must be kept secret. Anyone can use the public 

key to encrypt a message, but with currently published methods, if the public key is large enough, 

only someone with knowledge of the prime numbers can feasibly decode the message.
[2]

 Breaking 

RSA encryption is known as the RSA problem; whether it is as hard as the factoring problem 

remains an open question. 

RSA is a relatively slow algorithm, and because of this it is less commonly used to directly 

encrypt user data. More often, RSA passes encrypted shared keys for symmetric key cryptography 

which in turn can perform bulk encryption-decryption operations at much higher speed. 

 

Example Problem: 

 Consider an RSA system with n = 91 and e = 25. Calculate d. 

 n = 91 = 7 x 13, so φ(n) = φ(7 x 13) = φ(7) x φ(13) = 6 x 12 = 72. 

 d = e-1 mod φ(n). Thus, d = 25 -1 mod 72.  

Use the Extended Euclidean Algorithm to find d:  

72 = 2 x 25 + 22 

 25 = 1 x 22 + 3 

 22 = 7 x 3 + 1 

 22 - 7 x 3 = 1  

22 - 7(25 - 22) = 1  

22 - 7 x 25 + 7 x 22 = 1  

8 x 22 - 7 x 25 = 1 

8(72 - 2 x 25) - 7 x 25 = 1 

 8 x 72 - 16 x 25 - 7 x 25 = 1 

 8 x 72 - 23 x 25 = 1 

 It follows that d ≡ -23 ≡ 49 (mod 72)  

Knapsack Cipher  

https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Cryptosystem
https://en.wikipedia.org/wiki/Encryption_key
https://en.wikipedia.org/wiki/Decryption_key
https://en.wikipedia.org/wiki/Decryption_key
https://en.wikipedia.org/wiki/Factorization
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Factoring_problem
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/Leonard_Adleman
https://en.wikipedia.org/wiki/Clifford_Cocks
https://en.wikipedia.org/wiki/Government_Communications_Headquarters
https://en.wikipedia.org/wiki/Classified_information
https://en.wikipedia.org/wiki/RSA_(cryptosystem)#cite_note-1
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/RSA_(cryptosystem)#cite_note-rsa-2
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/RSA_problem
https://en.wikipedia.org/wiki/Symmetric-key_algorithm


The Knapsack Cryptosystem was made by Merkle and Hellman, which was was based off of the 

“knapsack problem” : Given a set of items, each with a weight and a value, determine the number of 

each item to include in a collection so that the total weight is less than or equal to a given limit and 

the total value is as large as possible. 

There is a subset{}, and a chosen target that numbers from the subset add up to. 

  

In the Knapsack Cryptosystem, The subset chosen is “super-increasing” which means every number 

in the subset is greater than the sum of all numbers beforehand. 

 

Super-Increasing subset representation 

  

To create the public key, we must take the values and multiply by a number a (which has no factors 

common with any number in the subset, and take a modulus (p) of a value which is greater than the 

total sum of the super-increasing set. 

  

The public key will end up looking like: 

({a(s1)modm, a(s2)modp, a(s3)modp, a(s4)modp, a(s5)modp, …}a p) 

  

While the private key ends up being the super-increasing subset 

{(s1, s2, s3, s4, s5, …)} 

  

Encrypting a message is a simple as taking in the amount of bits as the number of entries in the 

subset, using them to tell which numbers to use in the public key to add together, producing a part of 

the encrypted message. 

For example, if you had the binary 10110, you would have to add together 

 a(s1)modp + a(s3)modp + a(s4)modp = c 

where c = part of encrypted message sent 

  

To Decrypt a message, the receiver has to have the prime ‘a’, and the modulus used ‘p’. The 

receiver would then find the inverse modulo of a mod p, ‘a^-1 modp’ and multiply that by the 

received values mod p 

  



a’ = inverse modulo amodp 

a’ * c mod p 

 

This value is compared to the superincreasing private key as a sort of ‘Target’ to pick out which 

numbers from the subset are used to add up to the decoded message. 

  



 

Here is a very thorough example 

  

Plaintext 111010101101111001 

Private key {1, 2, 4, 10, 20, 40} 

  

Calculating Public key 

1×53 mod(120) = 53 

2×53 mod(120) = 106 

4×53 mod(120) = 92 

10×53 mod(120) = 50 

20×53 mod(120) = 100 

40×53 mod(120) = 80 

  

Public key {53, 106, 92, 50, 100, 80} 

  

Now we take the plaintext in groups of 6 (because that’s how many numbers are in the Public Key 

subset) adding the numbers from subset that are evaluating to 1, leaving the 0’s out.  

                s1  +  s2  + s3  + s5  = c     (from public key) only for first block of bits 

111010 = 53 + 106 + 92 + 100 = 351 

101101 = 53+ 92 + 50 + 80 = 275 

111001 = 53 + 106 + 92 + 80 = 331 

  

Cipher text to send is 351 275 331 

  

Receiver finds inverse 53 (a) mod 120 (p) which is 77 

77 is now taken and multiplied by the ciphertext and modded ‘p’ 

  

351×77 mod(120) = 27 = 111010 (1+2+4+20) compared to private key 

275×77 mod(120) = 55 = 101101 

331×77 mod(120) = 47 = 111001 

  



Decoding the message to 111010101101111001 

  

  

  

Example from Arup Guha’s slides Week 11 

  

Plaintext: 1001 

Private key {1, 5, 7 19} 

Modulo ‘p’ = 41 

Prime ‘a’ = 10 

  

Public key {10, 9, 29, 26} 

  

Plain =      1   0   0   1 

Cipher =     10  +    26 = 36 

  

36 is sent. 

Receiver (has ‘a’ and ‘p’) calculates a (inverse) mod p 

                                                  10 * 37 mod 41 = 1 

          

And 37 (‘a’ inverse mod ‘p’) is multiplied by 36 (plaintext) mod ‘p’ 

  

37 * 36 mod 41 

20mod41 

  

Which evaluates back out to 

  

1  0  0  1 

1    +  19  = 20 

 



Elliptic Curve Cryptography 

Prepared by Group 7: Austin Shipley, Isaac Ehlers, David Dill, and Chey Smith 

TL;DR 

Elliptic curves are like this:  

y2 = x3 + ax + b (mod p)  

To do P + Q = R, you use this: 

Δ = (yq – yp) / (xq – xp) 

 xr = Δ2 – xp – xq 

 yr = Δ*(xp – xr) – yp 

If you want to add something to itself like P + P = R, use this: 

Δ = (3xp
2 + a) / (2yp) 

xr = Δ2 – 2xp 

yr = Δ * (xp – xr) – yp 

gg, ez. 

 

In more detail on the next page 

  



Elliptic curve arithmetic is strange, but useful, and it helps keep us secure by introducing a new type of 

problem: the elliptic curve discrete logarithm problem. 

Elliptic curves are defined as the set of points that form a solution to an equation of the form: 

 y2 = x3 + ax + b (mod p) 

Which is often reduced to the notation Ep(a,b)    

When you add two points on an elliptic curve, you draw a line between them and take the opposite 

point of where that line intersects the curve. As seen in the figure.

 

Pretty simple, and we have a formula for it! (listed at the beginning) 

What’s useful about Elliptic curve arithmetic is that repeated operations yield difficult to predict 

answers, in fact the only way to arrive at the answer is to perform all the calculations that led up to it. In 

regular arithmetic 2 + 2 = 4, 4 + 2 = 6, 6 + 2 = 8 can be simplified to 2*4, there is no simplification in EC 

arithmetic. If you want to calculate A + A = B, A + B = C, A + C = D you have to perform each and every 

calculation, in sequence. This parallels the elliptic curve discrete logarithm problem mentioned before, 

and makes it an excellent candidate for a cryptographic system. 

 

 



Here’s how it can be used to generate a shared secret key: 

Alice and Bob decide on a curve to use and pick an arbitrary point G on the curve. 

Alice generates a random integer aa which is her private key, and finds her public key A=aa*G (i.e. G 

added to itself aa times).  

Bob uses his random private key bb to form B=bb*G. 

They exchange public ECC keys, and then Alice finds their shared secret by calculating aa*B, and Bob 

finds bb*A 

Since aa*B=aa*(bb*G)=(aa*bb)*G=(bb*aa)*G=bb*(aa*G)=bb*A, they've computed the same value. 

 

Example 

Given the curve E23(14, 11) calculate A + B and 2A where A = (6, 9) and B = (3, 7): 

(Remember this is in mod 23, so no division, instead multiply by the inverse) 

A + B: 

 Δ = (7 – 9) / (3 – 6)  = -2 * -3-1 = -2 * 15 = -30 = 16 

xc = 16^2 – 6 – 3 = 247 = 17 

 yc = 16 * (6 – 17) – 9 = -185 = 22 

 A + B = (17, 22) 

 2A: 

 Δ = (3*6^2 + 14) / (2*9) = 122 * 18-1 = 7 * 9 = 63 = 17 

xr = 172 – 2*6 = 288 = 1 

yr = 17 * (6 – 1) – 9 = 76 = 7 

 2A = (1, 7) 
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Group 7: Elliptic Curve Cryptography 
 

Group Theory:  

 Elliptic curve arithmetic is a specific part of Group Theory in mathematics. It falls under 

the stricter category of Abelian Groups. Regular groups require four of the five following 

identities (A1 through A4) to be considered a group, whereas Abelian Groups require a fifth, 

more specific identity (A5): 

 

(Abelian) Group Properties: 

A1. "Closure" -  If a  is an element of group G  and b is an element of group G, then  

 the dot product of a  and b is also an element in group G: 

 

  a  G , b  G  a  b  G 

 

A2. "Associative" - The following equivalence must be valid, where a, b, and c are all elements 

 within some group G (a, b, c  G):  

 

  a  (b  c) = (a  b)  c 

 

A3: "Identity Element" - There must exist elements e and a within some group G (e, a  G) 

such that: 

 

  a e = e  a  = a 

 

A4: "Inverse Element" - For each element a within some group G, there must exist an element 

 a' also within G (a  G, a'  G) such that:  

 

  a  a' = e, a'  a = e 

 

A5: "Commutative" - For elements a  and b within some group G (a, , the following must be 

true: 

 

  a  b = b  a 
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Elliptic Curve Arithmetic: 

 Elliptic Curve Cryptography (ECC) is a form of public key cryptography that utilizes the 

properties elliptic curves and the points that lie on them. Points on the elliptic curves used in 

ECC must satisfy the following equation (and it is these points that make up the elements of the 

group defined above): 

 

  E𝑞(a, b): (𝑦2  𝑥3 + ax + b) mod q, q   (prime) 

 

 When executing Elliptic Curve Cryptography, there are two operations that must be 

performed on the curve's points (𝑃𝑛) - elliptic curve "addition" of points with differing x-

coordinates (determining 𝑃𝑝 + 𝑃𝑞) and elliptic curve "addition" of  points with equal x-

coordinates (specifically, determining 2𝑃𝑛): 

 

Addition (𝑥𝑝 ≠ 𝑥𝑞): 

 If we have two points of the form (𝑥𝑝, 𝑦𝑝) and (𝑥𝑞, 𝑦𝑞) and wish to add them to determine 

the resulting point (𝑥𝑟, 𝑦𝑟), we can use the following steps: 

 

1. Determine the slope delta:  

  = 
𝑦𝑞− 𝑦𝑝

𝑥𝑞− 𝑥𝑝
 

2. Use delta to determine the x-coordinate of the resulting point: 

  𝑥𝑟 = 2 - 𝑥𝑝 - 𝑥𝑞 

3. Now, using the resulting x-coordinate, determine the y-coordinate of the resulting point: 

 𝑦𝑟 = (𝑥𝑝 - 𝑥𝑟) - 𝑦𝑝 

 

Note: This will only work if 𝑥𝑝 ≠ 𝑥𝑞. Or, in other words, the slope between the points being 

added is defined. 

 

Addition (𝑥𝑝 = 𝑥𝑞): 

 Similarly, if we have two points of the form (𝑥𝑝, 𝑦𝑝) and (𝑥𝑝, 𝑦𝑞) - note the x-coordinates 

are the same, thus the slope between them is undefined - and wish to add them to determine the 

resulting point (𝑥𝑟, 𝑦𝑟), we can use the following steps: 

 

1. Determine delta:  

  = 
3𝑥𝑝

2+ 𝑎

2𝑦𝑝
 

2. Use delta to the x-coordinate of the resulting point:  

 𝑥𝑟 = 2 - 2𝑥𝑝 

3. Now, using the resulting x-coordinate, determine the y-coordinate of the resulting point: 

 𝑦𝑟 = (𝑥𝑝 - 𝑥𝑟) - 𝑦𝑝 

 

You now have the elements necessary to construct the resulting point(s) (𝑥𝑟, 𝑦𝑟). 

Elliptic Curve Cryptography: 
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 When setting up a cryptosystem that utilizes elliptic curve arithmetic, you must determine 

the following: 

 

Global Public Elements:  

1. The elliptic curve with notation E𝑞(a, b) as shown above. 

2. Point G, a point on the curve with "large order" - takes a long time to cycle back around 

to where you started (typically considered a generator of prime q). 

 

User Elements:  

 User A (Alice): 

1. Public - some integer 𝑛A, where: 𝑛A < q 

2. Private - some integer 𝑃A, where:  𝑃A = 𝑛A  ×  G  

 

User B (Bob): 

1. Public - some integer 𝑛B, where: 𝑛B < q 

2. Private - some integer 𝑃B, where:  𝑃B = 𝑛B  ×  G  

 

 From here, Alice can calculate K = 𝑛A  ×  𝑃B, and Bob can calculate K = 𝑛B  ×  𝑃A. Note 

that both of these values come out to the same value of K = 𝑛A  ×  𝑛B × G (similar to the process 

seen in the Diffie-Hellman key exchange). 

 

Now, for Alice to send message P𝑚 to Bob: 

1. Alice must choose a random integer k and send the following ciphertext to Bob:  

 C𝑚 = {kG, P𝑚 + kP𝐵} 

2. Bob receives C𝑚, and knowing  𝑛B, can decrypt the ciphertext through the use of the 

following calculations: 

  (P𝑚 + kP𝐵) - 𝑛B(kG) = (P𝑚 + k(𝑛BG)) - 𝑛B(kG) 

              = P𝑚 + (k𝑛BG - k𝑛BG) 

              = P𝑚 

 

Thus, using only the information sent with C𝑚 and his own private key 𝑛B, Bob is able to decrypt 

Alice's message successfully. 



CIS 3362 

group 12 

Birthday Attack Problem 

One year on Venus is 225 days. What is the probability that of a random sample of 10 

Venetians, all of them have different birthdays? Please write down the answer in product 

notation and then use your calculator to get an approximation for the value. 

The probability that two selected Venetians have the a different birthday is 
224

225
, because if one person 

has a birthday, there are 224 other days that the second birthday could be on. This means, to find the 

probability that none of the 10 random Venetians have the same birthday, you would need to calculate: 

225

225
∗

224

225
∗ 

223

225
∗ 

222

225
∗  

221

225
∗ 

220

225
∗  

219

225
∗ 

218

225
∗  

217

225
∗ 

216

225
∗  

215

225
 

== 

∏
225 − 𝑛

225

10

𝑛=0

 

 𝑜𝑟  

225!

(225 − 𝑛)! 255𝑛
 , 𝑤ℎ𝑒𝑟𝑒 𝑛 = 10 

 

This comes out to being ≈ 𝟎. 𝟖𝟏𝟔𝟒 𝒐𝒓 𝟖𝟏. 𝟔𝟒% chance that none of the Venetians have the same 

birthday. 

A more generalized equation for a Birthday Probability problem would be: 

𝑃(𝑛) = ∏
𝑑 − 𝑡

𝑑

𝑛

𝑡=0

 𝑜𝑟 
𝑑!

(𝑑 − 𝑛)! 𝑑𝑛
  

Where d = the number of days and n = the sample of birthdays. 

If the question were asking for the probability that at least 2 have the same birthday, it would be: 

1 – P(n) 

 In this case, 1 - .8164 = .1836 or 18.36% chance at least 2 Venetians in a group of 10 have the same 

birthday. 



El Gamal Cryptosystem 

 

Alice Creates: 

Public     Private 

p - Prime Number   X - Random number < p - 1 

α - Primitive Root of p 

Y = αX mod p 

 

 1. Plaintext M,  M < p 

 2. Random integer k, k < p 

 3. K = (Y)k mod p 

 4. C1 = αK 

 5. C2 = KM mod p 

           = Yk * M mod p 

= (αX) k * M mod p 

= αXk * M mod p 

 6. Send (C1, C2) 

 

To Decrypt: 

 K = C1
X = αk*X mod p 

 M = K-1*C2 mod p 

  = K-1 * K * M mod p 

 

Example 

 Let p = 11, α = 2 

 Let X = 8 

 Y = αX  

Y = 28 = 256 mod 11 = 3   Y = 3 

 

 1. Let M = 5,  

2. Let k = 9 

 3. K = Yk mod p = 39 mod 11 = 4  K = 4 

 4. C1 = αk = 29 mod 11 = 6 

 5. C2 = K*M = 4*5 = 20 mod 11 = 9 

 6. Send (C1, C2) = (6, 9) 

 

If decrypting: 

 K = C1
X  

= αk*X mod p 

  = Yk mod p 

  = 39 mod 11 = 11 

 M = K-1 * C2 mod p = K-1 * K * M mod p 

  4-1 mod 11 = 3 

  4 * 3 * 5 mod 11 = 5 mod 11 
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Digital Signature Standard (DSS) Notes 

Key Generation: 

1. Choose a prime p:  

2L-1 < p < 2L, where 512 ≤ L ≤ 1024 (512 bits to 1024 bits) 

2. Choose a prime q:  

q | (p-1), where q is 160 bits 

3. Choose a primitive root/generator g: 

g = h(p-1)/q mod p, where 1 < h < p-1 

4. Compute private and public keys for a single user: 

a. Choose a random secret key x, where 0 < x < q 

b. Calculate the public key: 

y = gx mod p 

Signing: 

1. Let H be the hashing function and m the message 

2. Generate a random per-message value k, where 0 < k < q 

3. Calculate r = (gk mod p) mod q 

4. Calculate s = [k-1 (H(m) + xr)] mod q 

Signature: (r,s) 

Verify: 

1. Calculate w = (s’)-1 mod q 

2. Caculate u1 = [H(m’)w] mod q 

3. Caculate u2 = r’w mod q 

4. Calculate v = (gu1yu2 mod p) mod q 

5. Signature is valid if v = r 



 


