CIS 3362 11/28/22

11/28 - Quantum Cryptography
11/30 - Hash Functions
12/12 - Final Exam Review

Summarize last chat in Code Book
Demonstration - Cryptool

Photons - to know their orientation, you need to use a "reader"

\[+ 1 = 1 \quad - = 0 \]

\[\times \downarrow = 1 \quad \uparrow = 0 \]

What happens when \(\downarrow \) but read \(+ \)?

50% \(\Rightarrow \) read 1, 50% \(\Rightarrow \) read 0.

Sending \[\rightarrow \]

Alice

It’s near impossible for Eve to observe what’s going on w/o being detected, because her presence affects the qubits.
Goal: for Alice and Bob to exchange a stream of bits for either 1 time pad or a private key scheme knowing that no one else has that stream of bits.

Alice sends Bob \(n \) bits, randomly choosing the reader orientation (doesn't share w/Bob)

\[
\begin{array}{cccc}
1 & 0 & 0 & 1 \\
+ & + & x & + \\
X & X & + & + \\
\hline
W & C & W & W & C
\end{array}
\]

Eve listening \(\rightarrow \)

She'll guess

So on \(\approx n/4 \) bits

Eve will use wrong
Bob will use correct

Afterwards, Alice share Bob's guesses, throw out all wrong guesses. (left \(n/2 \) bits...)

Imagine Alice shares into about the bits w/Bob.

\(n/4 \) bits when Eve guessed wrong, \(1/2 \) time Bob's answer he's read will disagree w/what Alice sent.

\(n/8 \) bits Bob will get wrong.

\[
\left(\frac{7}{8} \right)^n
\]

where we use \(n \) bits is probability that Eve goes undetected.
We send more than \(n \) bits
Sample \(n \) bits this way randomly.
If no error is detected among all the bits
when Alice + Bob used the same reader, then
we assume Eve wasn't on the line!

\[
\left(\frac{7}{8} \right)^{100} \approx 10^{-6}
\]

If we chose \(n = 400 \Rightarrow \approx 10^{-24} \) (small!)

Example: Send 2000 bits
\[\text{Sample 400 if all ok}\]
Exchange into 1600 readers
\[\text{Keep all bits w/ the correct reader.}\]

In theory would be unbreakable.

Issues: Extremely costly + time consuming
probably issues w/ reliability over distances.