Quiz 4

11/9/2022 (Wednesday) in Class

Bring: Calculator

Bring: 1 sheet of typed or written notes front and back

Topics

Prime Factorization, Mod
Fermat’s Theorem
Euler Phi Function
Euler’s Theorem
Primality Testing (Miller-Rabin)
Discrete Log Problem
Factoring Methods (Fermat, Pollard-Rho)
Fast Modular Exponentiation
Diffee-Hellman Key Exchange
RSA Encryption
El Gamal Encryption

Sample Questions
1) (Determine the Prime Factorization of 158,059,200)

158,059 \times 100 = 2^4 \times 2^2 \times 5^2 \times 98787

= 2^4 \times 2^2 \times 5^2 \times 3 \times 32929

= 2^4 \times 2^2 \times 5^2 \times 3 \times 13 \times 2533

= 2^4 \times 2^2 \times 5^2 \times 3 \times 13 \times 17 \times 149

= 2^6 \times 3 \times 5^2 \times 13 \times 17 \times 149

Try dividing by each prime, first 11 works.

2) Determine \(\phi(158059200) \). Express your answer in prime factorized form.

\[
\phi(158059200) = \phi(2^6) \times \phi(3) \times \phi(5^2) \times \phi(13) \times \phi(17) \times \phi(149)
\]

\[
= (2^6 - 2^5)(3 - 1)(5^2 - 5)(13 - 1)(17 - 1)(149 - 1)
\]

\[
= 2^5 \times 2 \times 2^2 \times 5 \times 2^2 \times 3 \times 2^4 \times 2^2 \times 37
\]

\[
= 2^{16} \times 3 \times 5 \times 37
\]

3) Determine the remainder when \(73^{1388} \) is divided by 199. Note that 199 is prime. For full
credit use Fermat’s Theorem.

\[73^{198} = 1 \mod 199 \]

\[73^{1388} = 73^{198x7 + 2} = (73^{198})^7 \times 14 \equiv 1^7(5329) \equiv 155 \mod 199 \]

4) Determine the remainder when \(7^{7181} \) is divided by 2491. (Note: 2491 = 47 x 53.) For full credit use Euler’s Theorem.

\[\text{Phi}(47 \times 53) = \text{phi}(47) \times \text{phi}(53) = 46 \times 52 = 2392 \]

\[7^{2392} = 1 \mod 2491 \]

\[7^{7181} = 7^{2392 \times 3 + 5} = (7^{2392})^3 \times 7^5 \equiv 1^3(16807) \equiv 1861 \mod 2491 \]

5) (10 pts) Use the Fermat Factoring Method to factor 44,173. Please fill out the table below. Note: More rows than necessary are provided.

| X | \(x^2 - 44173 \) is sq? |
\((217 - 54) \times (217 + 54) = 163 \times 271 \)

6) (8 pts) 7 is a generator/primitive root mod 17. There are a total of 8 generators mod 17. List

These generators can be listed the form \(7^a \mod 17 \), \(7^b \mod 17 \), \(7^c \mod 17 \), \(7^d \mod 17 \), \(7^e \mod 17 \), \(7^f \mod 17 \), \(7^g \mod 17 \), and \(7^h \mod 17 \), where \(0 < a < b < c < d < e < f < g < h < 17 \). List the values of \(a, b, c, d, e, f, g \) and \(h \) in order.

\(7^2 \) not a generator because \((7^2)^8 = 7^{16} = 1 \mod 17 \)
Values of a, b, c, d, e, f, g, h do NOT share any common factors with 17 - 1 = 16.

1, 3, 5, 7, 9, 11, 13, 15

7) (9 pts) Consider doing a Diffie-Hellman Key Exchange with the public keys p = 37 and g = 5.

Let Alice choose a private key of a = 15 and Bob choose a private key of b = 24. Calculate

(a) The value that Alice sends to Bob.

(b) The value that Bob sends to Alice.

(c) The shared key that both Alice and Bob will calculate at the end.

(a) 5, 25, 125 mod 37 = 14, -4

\[5^4 \equiv -4 \mod 37 \ldots \]
\[5^{15} = (5^4)^35^3 = (-64)(14) = 10(14) = 140 = 29 \]

(b) \((5^{12})^2 = 10^2 = 100 = 26 \mod 37\]

C) \(5^{15} \times 24 = 5^{360}\), we know that \(5^{36} = 1 \mod 37\)

\((5^{36})^{10} = 1^{10} = 1\)
8) (10 pts) In an RSA system, \(p = 17, q = 31 \) and \(e = 91 \). What is \(d \)? (Note: Full credit will only be given to responses that appropriately use the Extended Euclidean Algorithm.)

\[
\phi(n) = (17 - 1)(31 - 1) = 16 \times 30 = 480
\]

\[
d = 91^{-1} \mod 480
\]

\[
480 = 5 \times 91 + 25
\]
\[
91 = 3 \times 25 + 16
\]
\[
25 = 1 \times 16 + 9
\]
\[
16 = 1 \times 9 + 7
\]
\[
9 = 1 \times 7 + 2
\]
\[
7 = 3 \times 2 + 1
\]
\[
7 - 3 \times 2 = 1
\]
\[
7 - 3(9 - 7) = 1
\]
\[
4 \times 7 - 3 \times 9 = 1
\]
\[
4(16 - 9) - 3 \times 9 = 1
\]
\[
4 \times 16 - 7 \times 9 = 1
\]
4 x 16 - 7(25 - 16) = 1
11 x 16 - 7 x 25 = 1
11(91 - 3 x 25) - 7 x 25 = 1
11 x 91 - 33 x 25 - 7 x 25 = 1
11 x 91 - 40 x 25 = 1
11 x 91 - 40(480 - 5 x 91) = 1
11 x 91 - 40 x 480 + 200 x 91 = 1
211 x 91 - 40 x 480 = 1
Taking this equation mod 480 we find: 211 x 91 ≡ 1 (mod 480) It follows that d = 211.

9) (12 pts) Let the public elements of an El Gamal Cryptosystem be q = 41, α = 12. Let Alice's private key XA = 17. Do the following:

1. Calculate Alice's Public Key.

2. Calculate the ciphertext (C1, C2) when Bob sends a message to Alice where M = 6 and his randomly chosen value k = 19.
1. $Y_A = 12^{17} \mod 41$

$12^1 = 12$

$12^2 = 144 - 123 = 21 \mod 41$

$12^4 = 21^2 = 441 = 31 \mod 41$

$12^8 = (-10)^2 = 100 = 18 \mod 41$

$12^{16} = (18)^2 = 324 = 37$

$12^{17} = 12^{16} \times 12 = (37 \times 12) = -4 \times 12 = -48 = 34 \mod 41.$

$M = 6, \ k = 19$

$34^{19} = (-7)^19 = (-7)^9(-7)^9(-7) = (13)(13)(-7) = 5(-7) = -35 = 6$

$K = 6$

$C_1 = 12^{19} = 12^{17}12^2 = (34)(21) = 17$

$C_2 = 6 \times 6 = 36$