last time \(\rightarrow \) Fermat's Thm

1) Euler Phi Function \(\phi(n) \)

2) Euler's Thm (generalization of Fermat's)

\(\phi(n) \) = the \# of values in the set \(\{1, 2, 3, \ldots, n-1\} \)

that are relatively prime with \(n \).

\(\phi(6) = 2 \), \(\gcd(1, 6) = \gcd(5, 6) = 1 \), but \(\gcd(2, 6) \neq 1 \)

\(\gcd(3, 6) \neq 1 \)

\(\gcd(4, 6) \neq 1 \)

\(\phi(7) = 6 \)

\(\phi(p) = p-1 \), \(p \in \text{Prime} \)

Goal: Can we derive a formula for \(\phi(n) \) given \(n \)'s prime factorization?

What about \(\phi(p^k) \) when \(p \in \text{Prime} \) \(k \in \mathbb{Z}^+ \)

\[
\begin{array}{cccc}
1, 2, 3, \ldots & p & 2p & \vdots \\
\vdots & 3p & \vdots & \ddots \\
\end{array}
\]

\(p^2 \) took \(\frac{p^2}{p} \) = \(p-1 \) values

- \(p \) values share common factor w/ \(p \)

\(\phi(p^2) = p^2 - p \), out of \(p^2 \) values \(p^{k-1} \) are divisible by \(p \)

Thus \(\phi(p^k) = p^k - p^{k-1} \)

Prove a critical fact:

if \(\gcd(m, n) = 1 \), then \(\phi(mn) = \phi(m) \phi(n) \).

This means \(\phi \) is a multiplicative function.

(All we have to do is multiply each term of form \(\phi(p^k) \) to get \(\phi(\text{any int}) \).}
Let's prove if \(\gcd(m,n) = 1 \), \(\phi(mn) = \phi(m)\phi(n) \).

1. Cross off values that share common factor w/n.

\[
\begin{array}{ccccccc}
1 & \times & 3 & \times & \ldots & \times & \times \\
\times & \times & \times & n+3 & \times & \ldots & \times \\
\times & \times & \times & \times & \times & \ldots & \times \\
2 & \times & 2\times 2 & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
(\text{m-1})\times 1 & \times & \times & \times & \times & \times & \times \\
\end{array}
\]

Nature of GCD is: if \(\gcd(i,n) > 1 \) then \(\gcd(i+n,n) > 1 \) and \(\gcd(i+nj,n) > 1 \) if \(1 \leq i \leq \text{m-1} \), \(j \in \mathbb{Z} \), \(0 \leq j \leq \text{m-1} \).

By definition \(\phi(n) \) columns survive!

Next goal: Prove that in each column, exactly \(\phi(m) \) values "survive", they are relatively prime with \(m \).

Column \(i \) has the \(m \) values described in this set
\[
U = \{ i+nj \mid j \in \mathbb{Z} \land 0 \leq j \leq m-1 \}.
\]

Prove that each item in \(U \) is distinct mod \(m \).
We use proof by contradiction to prove this. Assume to the contrary that \(\exists j_1, j_2 \in \mathbb{Z} \wedge j_1 \neq j_2 \wedge 0 \leq j_1, j_2 \leq m-1 \)

such that

\[
i + nj_1 \equiv i + nj_2 \pmod{m} \\
nj_1 \equiv nj_2 \pmod{m} \\
nj_1 - nj_2 \equiv 0 \pmod{m} \\
n(j_1 - j_2) \equiv 0 \pmod{m}
\]

\[\Rightarrow m \mid (n*(j_1-j_2))\]

By Rule if \(\gcd(a,b)=1 \) and \(a \mid bc \), then \(a \mid c \).

Since \(\gcd(m,n)=1 \), it follows that \(m \mid (j_1-j_2) \)

\[1 \leq |j_1-j_2| \leq m-1\] so the divisibility assertion is contradicted by our known info about the difference between \(j_1 \) and \(j_2 \).

\[\Rightarrow \text{each column has exactly } \phi(m) \text{ values relatively prime with } m.\]

Total # of surviving values = \(\phi(n) \times \frac{\phi(m)}{\text{# columns in each col}} \)