
2. Hash Functions - Today, Monday

Hash Function

1) Variable length input
2) Fixed bit output.
3) It's possible for 2 different inputs x, y such that $H(x) = H(y)$. But this shouldn't occur easily.
4) Should be fast to compute.

Uses

1) Message Authentication
 - Proof message hasn't been changed since it left the sender

2) Digital Signature
 - Proof of who sent the message.
4. Methods to use a hash function for message authentication

(a) \(E(K, [M \| H(m)]) \)

\(\| \) → concatenate
\(E(K, \text{something}) \) : encrypt something using the symmetric key \(K \).

I receive \(E(K, [M \| H(m)]) \), I decrypt, get \(M \| H(m) \) → run through hash function to double check that this matches.

(b) \(M \| E(K, H(m)) \)

I receive \(M \| E(K, H(m)) \). Decrypt to get \(H(m) \). Then calculate \(H(m) \) and see if they match.

(c) \(M \| H(m) \| S \), \(S = \text{Secret Value} \).

I receive this, I know \(S \). Calculate \(M \| H(m) \| S \).
Then I calculate \(H(m) \| S \) and see if it matches.

(d) \(E(K, [M \| E(\text{PRa}, H(m)]) \)

Both digital sign AND msg auth AND confidential.

I receive + decrypt = \(M \| E(\text{PRa}, H(m)) \).
I calculate \(H(m) \).
Use \(\text{PRa} \) to decrypt this part to reveal \(H(m) \), see if they match.
Storing Passwords (hashing is used)

Stealing a file with plaintext passwords is very bad!

Instead this better:

Name \(H(\text{pswd}) \)

Bob 110100... Just because I know you.

Alice 010111... it's hard to calc \(x \) s.t. \(H(x) = y \).

Rainbow Table

Generate few million "common" passwords. For each, calculate \(H(x) \). Then look for matches in this...

If ANY of the 1000 users has abc123, we'll figure who it is...

Improvement = SALT

\[
\begin{array}{ccc}
\text{Name} & \text{Salt} & H(\text{pswd} || \text{Salt}) \\
Bob & 110101... (rand bit string) & 01.... \\
Alice & 011011... & Multiples work by # of users. \\
\end{array}
\]

Now if I add SALT to Bob's SALT, I can only break Bob's if he had one I guessed.
Requirements for a good hash function
1. Variable input size
2. Fixed output size
3. Fast to compute

4. Given output value y, it should be computationally infeasible to find any x such that $H(x) = y$. [PRE-IMAGE RESISTANCE]

5. Given an input x, it's computationally infeasible to find y, $y \neq x$, such that $H(x) = H(y)$. [SECOND IMAGE RESISTANCE]

6. Hard to find ANY x, y such that $H(x) = H(y)$ [COLLISION RESISTANCE]

\[\text{Birthday Paradox!} \]

\[\#y \leq 3 \quad \text{prob} = \frac{1}{2^{30\text{ bits}}} \]

30 room. What's prob all birthdays are different?

\[1 \times \frac{364}{365} \times \frac{363}{365} \times \frac{362}{365} \times \cdots \frac{336}{365} \]

\[\hat{p} \text{ (some 2 people)} = 1 - \frac{336}{365} \]