

AES #1

Wednesday, October 7, 2020 11:31 AM

128 bit key

128 bit block

10 rounds

Will have Round keys just like DES

AES has a state matrix

b1	b5	b9	b13
b2	b6	b10	b14
b3	b7	b11	b15
b4	b8	b12	b16

in some books they will write it this way:

b0,0	b0,1	b0,2	b0,3
b1,0	b1,1	b1,2	b1,3
b2,0	b1,2	b2,2	b2,3
b3,0	b1,3	b3,2	b3,3

b means byte. A byte is 8 bits, usually in most books the byte is represented as 2 Hex characters.

Before we start the rounds, we add the Round 0 key (which is the original key).

Add Round Key just means XOR all the bytes. (Round 0 key)

Note: Round 0 key is the original key.

Rounds 1-9 are full rounds

- a) Sub bytes
- b) Shift rows
- c) Mix columns

d) Add round key

Round 10

- a) Sub bytes
- b) Shift rows
- c) Add round key

Sub Bytes

There is a table...for each byte, it tells us which byte to substitute!

Let's say here is our state matrix:

00	01	02	22
23	24	25	80
81	82	a1	a2
b3	b4	b5	ff

After sub bytes it will look like this:

63	7c	77	93
26	36	3f	cd
0c	13	f1	1a
4b	c6	d2	16

The s-boxes were created in a mathematical way. It uses a field from number theory (group theory). I will mention this later.

Shift Rows

First row is unchanged.

Second row is cyclically shifted to the left by 1 byte

Third row is cyclically shifted to the left by 2 bytes

Fourth row is cyclically shifted to the left by 3 bytes.

b1	b5	b9	b13
----	----	----	-----

b2	b6	b10	b14
b3	b7	b11	b15
b4	b8	b12	b16

-->

b1	b5	b9	b13
b6	b10	b14	b2
b11	b15	b3	b7
b16	b4	b8	b12

63	7c	77	93
26	36	3f	cd
0c	13	f1	1a
4b	c6	d2	16

-->

63	7c	77	93
36	3f	cd	26
f1	1a	0c	13
16	4b	c6	d2

Mix columns

This step is tough...will come back to in a couple minutes...

Add Round key

Just XOR each byte of the state matrix with each byte of the key for that round.

Mix columns

The entire basis of the security of AES is based on the mathematical field, $GF(2^8)$ with the irreducible polynomial

$$x^8 + x^4 + x^3 + x + 1$$

A byte is not interpreted as a binary number in AES, it is interpreted as a special polynomial of at most degree 7.

When you see $63 = 0110\ 0011$, this doesn't mean 63, what it really means is

$$x^6 + x^5 + x + 1$$

We think of 63 (in binary) = 99 (in decimal) = $2^6 + 2^5 + 2 + 1$
So just think of replacing 2 with x to make it a polynomial...

What $GF(2^8)$ means is that there are 8 coefficients, and each of those 8 coefficients is chosen from a set of 2 values $\{0,1\}$.

So we can define addition, subtraction and multiplication on these polynomials and our system must have closure...all answers must be a valid polynomial as well.

Way we do this: calculate coefficients mod 2, which is essentially similar to XOR:

$$(x^6 + x^5 + x + 1) + (x^3 + x^2 + x) =$$

$(x^6 + x^5 + x^3 + x^2 + 2x + 1)$ now reduce coefficients mod 2

$$(x^6 + x^5 + x^3 + x^2 + 1)$$

Note: subtraction is IDENTICAL to ADDITION and both are essentially like XOR.

Tricky thing is multiplication:

$$(x+1)(x^6 + x^5 + x + 1) =$$

$$\begin{aligned} & (x^7 + x^6 + x^2 + x) + (x^6 + x^5 + x + 1) = \\ & = x^7 + 2x^6 + x^5 + x^2 + 2x + 1 \\ & = x^7 + x^5 + x^2 + 1 \end{aligned}$$

So, multiplying by x is USUALLY leftshifting the byte by 1.
Multiplying by $(x+1)$ is taking the byte leftshifted by 1 and then
XORing to the byte itself.

0110 0011
1100 0110

1010 0101 , identical work, displayed differently.

What problem occurs with multiplication?

Consider:

$$x(x^7 + x^5 + x^2 + 1) =$$

$$x^8 + x^6 + x^3 + x$$

What is the problem?

Problem is x^8 doesn't fit in the byte!!! It's an overflow.

What AES does is calculate this term MOD the AES polynomial...

$$x^8 + x^6 + x^3 + x \bmod x^8 + x^4 + x^3 + x + 1$$

All the terms less than x^8 stay as the same term under this mod

$$x^8 \text{ equivalent to } x^4 + x^3 + x + 1 \bmod x^8 + x^4 + x^3 + x + 1$$

So, when you see x^8 in AES, just replace with $x^4 + x^3 + x + 1$.

$$x(x^7 + x^5 + x^2 + 1) =$$

$$\boxed{x^8} + x^6 + x^3 + x =$$

$$\boxed{(x^4 + x^3 + x + 1)} + x^6 + x^3 + x =$$
$$x^6 + x^4 + 1$$

1010 0101 mult by 2

1 0100 1010 this equals

0100 1010
0001 1011

0101 0001, this work is the exact same as the work above.

$$(x+1)(x^7 + x^5 + x^2 + 1) =$$

$$x(x^7 + x^5 + x^2 + 1) + (x^7 + x^5 + x^2 + 1) =$$
$$x^6 + x^4 + 1 + (x^7 + x^5 + x^2 + 1) =$$
$$x^7 + x^6 + x^5 + x^4 + x^2$$

This is 03 x A5 = F4

Mix columns is a matrix multiplication in the field by a fixed matrix:

02	03	01	01
01	02	03	01
01	01	02	03
03	01	01	02

x

63	7c	77	93
36	3f	cd	26
f1	1a	0c	13
16	4b	c6	d2

So for example, the entry in row 1, column 2 would be

$$02 \times 7c + 03 \times 3f + 01 \times 1a + 01 \times 4b$$

$$02 \times 7c = 0111 1100 \text{ times } x = 1111 1000 \text{ (F8)}$$

$$03 \times 3f = 02 \times 3f + 3f$$

$$02 \times 3f = 0011\ 1111 \text{ times } x = \begin{array}{l} 0111\ 1110 \\ = 0011\ 1111 \end{array}$$

$$\hline 0100\ 0001 (41)$$

$$\begin{aligned} &= (f8 + 41) + (1a + 4b) \\ &= b9 + 51 \\ &= e8 \end{aligned}$$

$$\begin{array}{r} 1111\ 1000 \\ 0100\ 0001 \\ \hline 1011\ 1001 (b9) \end{array}$$

$$\begin{array}{r} 0001\ 1010 \\ 0100\ 1011 \\ \hline 0101\ 0001 (51) \end{array}$$

$$\begin{array}{r} 1011\ 1001 \\ 0101\ 0001 \\ \hline 1110\ 1000 (e8) \end{array}$$