DES Lec #3, AES Lec #1

Monday, October 5, 2020 11:43 AM

Agenda
1) Complete description of DES key schedule
2) Walk through DES code online
3) Start AES

Key Schedule;

Input Key is 56 bits, but is presented as 64 bits with 8 checksum bits.

Let's label the key bits k; through kes and of these bits, the checksum
bits are kg, k16, k24, k32, k4o, k48, k56, ke4.

Checksum 1s ODD PARITY for the row.

1011 0011, that last bit, ks has to be 1 so that there are an odd # of 1s
on the row.
0111 1100,
1100 0001,
0000 0010,
0010 1111,
11111110,
0101 1110,
1101 1111

In most books they would list the key in HEX:
b3 7c cl 02 2f fe 5e df

Algorithm

Take the initial key and split it in half, calling the left half Cy and the
right half Do. Note that our bit numbers will range all the way to 63
since we keep the bit numbers from the original numbering.

1) PC-1(CoDo)



1) For 16 rounds, do this:
fori=1 to 16:
Ci = LSi(G)
D; = LSi(Di)
Ki =PC-2(CD;)

Left-Shift is a cyclic left shift of the buffer, by either 1 or 2 bits. There 1s
a table that tells you whether to do 1 bit or 2.

After PC-1 Step - bits we grab from original key
5749413325179158504234261810259514335271911360
52 44 36

635547393123157625446383022146615345372921135
2820124

Calculate C1 and D1 by cyclic left shift on both buffers round 1 - it's 1
bit

49413325179158504234261810259514335271911 36052
44 36 57

554739312315762544638302214661534537292113528
2012463

We will apply PC-2 to this entire buffer above. Here is PC-2:

1417112415328156211023191242681672720132
4152 313747553040 5145 334844 49 39 56 34 53 46 42 50 36 29
32

The round 1 key, starts with the 10th bit from the original key, followed
by the 51st bit from the original key, followed by the 34th bit of the
original key, followed by the 60th bit of the original key.

If I wanted to speed up my encryption decryption, I would pre-calculate
all 16 round keys as permutation matrices of which bits to select from

the original key. The Round 1 Key matrix would start: 10, 51, 34, 60, ...

Before I know the key, we can calculate which bits to grab from the



original key in forming each round key.

You can have 16 tables of size 48, each of which tell you which bits to
grab from the original key to form the 16 round keys.

(These tables are printed in Stinson, from the extra book list...)

Code Walk Through

create temp for my example for size 4, e-s+1, let us do a cyclic left shift
of 2, so yellow is my starting index. That is start + numbits. But we want
to wrap around... start + (numbits+i)%size

temp
1 o B o0

Then we copy back into the appropriate section:

whole is offset by start...

Get started with AES

So, by the mid 1990s after DES had be around 20 years or so, computers
had gotten a lot faster, and were getting to the point where maybe very
powerful computers could try all possible keys to attach DES.

In 1998, the DES challenge was posed and utilized distributed
computing to break a DES key via brute force.

Server that would farm out sets of keys to try to computers that had
were IDLE. just had to be networked and donate your spare cycles.



Back then, using 1998 computing power and distribution, the key was
broken in 3 months.

This time span wasn't considered to be adequately long for security
purposes. It's possible that information from 3 months ago could still
remain valuable and should not get into unwanted hands.

At this time, the government solicited for a new algorithm with
improved security so that a brute force search was infeasible in a
reasonable amount of time.

Goals for the submitted algorithms:

1) Security (should not be breakable in a reasonable amount of time)
2) Simplicity(should be easy to understand and easy to implement in
both software and hardware)

Initially 15 algorithms considered, which were paired down to 5
finalists, and ultimately, the algorithm Rijndahl (prounouced Rain Doll)
won. The name comes from a concatenation of the two creators of the
algorithm:

Vincent Rijmen and Joan Daemen,

From <https://en.wikipedia.org/wiki/Advanced Encryption Standard>

Algorithm has 3 possible versions:

V1: 128 bit key, 128 bit block
V2: 192 bit key, 192 bit block
V3: 256 bit key, 256 bit block

Idea here is that if 128 bit key becomes brute forcible in the future, we
can just move to a different version.

I will just cover the 128 bit version with you.

The computing power necessary to break 128 bit key is much, much
more than to break a 56 bit key.



Largely non-mathematical, but the security is based in some number
theory. So I'll just teach you the very minimal amount of number theory
necessary to trace through the steps of the algorithm.



