Key to breaking substitution: freq analysis
- attributed to Al Kindi circa 900s.

Thwart freq analysis: 00 to 99
E → + 12/13 symbols

Vigenere Key: KNIGHTS
10, 13, 8, 11, 19, 18

Plain: GOOD MORNING
6, 14, 14, 3, 12, 14, 17, 13, 8, 13, 6

+ KEY 10, 13, 8, 6, 7, 19, 18, 10, 13, 8, 6

16, 27, 22, 9, 19, 33, 35, 23, 21, 21, 12

Ciphertext: QBWJTHJXVV

freq + infreq ⇒ same ciphertext
same letter ⇒ diff ciphertext

Paradigm Shift

If I knew the keyword length, L, then
I could create L bins of ciphertext
letters, where (in each bin, the letters were
shifted) the same way.
How to find the keyword length?

1800s - Kasiski Test (identifies the keyword length)

\[\text{key length} = 7 \]

\[p(2\text{nd} \text{the} \text{ diff } 1\text{st}) = \frac{6}{7} \]

\[p(3\text{rd} \text{ diff then } 1\text{st}, 2\text{nd}) = \frac{5}{7} \]

\[\frac{6}{7} \times \frac{5}{7} \times \frac{4}{7} \times \frac{3}{7} = \frac{360}{2401} \approx 15\% \]

Look for repeated strings in ciphertext (length 3 or greater)
The probability of accidental hit is low.

Take their index values in ciphertext

\[C_{zp} = 135, 233, 282 \]

\[L \mid (233 - 135) \rightarrow L \mid 98 \]

and \[L \mid (282 - 233) \rightarrow L \mid 49 \]

\[\gcd(98, 49) = 49 \]
Second method to find key word length

Index of Coincidence Test

\[IC(S) = \text{the probability that 2 randomly selected items from } S \text{ are the same.} \]

\[S = \{ 10 \text{ As, 20 Bs, 5 Cs, 15 Ds} \} \]

\[IC(S) = p_{aa}(2A) + p_{bb}(2B) + p_{cc}(2C) + p_{dd}(2D) \]

\[\frac{10}{50} \times \frac{9}{49} + \frac{20}{50} \times \frac{19}{49} + \frac{5}{50} \times \frac{4}{49} + \frac{15}{50} \times \frac{14}{49} \]

freq of letter i is \(f_i \), \(n = \sum f_i \) (k unique letters)

\[IC(S) = \frac{\sum f_i (f_i - 1)}{n(n-1)} \]

\[IC(\text{reg. Eng. text}) \approx 0.0676 \]

\[IC(\text{random letters}) = \frac{1}{26} = 0.0378 \]

1. Guess key word length (L)
2. Split bins into ciphertext into L bins.
3. For each bin calculate its Index of Coincidence.