RSA Encryption - Public Key Cryptosystem

Anyone can use Bob's public key to encrypt a message.

Bob posts his public key, and Bob keeps a secret key. This allows him to decrypt, but no one can either (a) figure out secret key or (b) decrypt msg using the public key.

One-way function is easy to compute but hard to reverse.

Ron Rivest - MIT prof
Adi Shamir - ?
Leonard Adleman - retired USC

Dec 76 – 1977

British Security Agency (equiv NSA in US)

71 or 72 a new hire Clifford Cocks (young) Participant in the International Math Olympiad.
In 3 weeks, Clifford came up with

2. Difffer-Hellman Key Exchange (KNI)
3. RSA

-1997 work declassified
Pick 2 large primes: \(p, q \) (Private keys)

1st public key is \(n = pq \) (factoring is hard)

Next we calculate \(\phi(n) = (p-1)(q-1) \) (This is private)

Pick random value \(e \) such that \(\gcd(e, \phi(n)) = 1 \).

Post \(e \) as the 2nd Public key.

Use Ext. Euclid Alg to solve for

\[d = e^{-1} \mod \phi(n) \]

\(d \) is the Private key

Note: Given \(n, \phi(n) \), we can calculate \(p, q \)

\[n = 7 \times 13 = 91 \]

\[\phi(n) = 6 \times 12 = 72 \]

\[pq = 91 \]

\[(p-1)(q-1) = 72 \]

\[pq - p - q + 1 = 72 \]

\[91 - p - q + 1 = 72 \]

\[p + q = 20 \]

\[q = 20 - p \]

Public keys: \(n, e \) \quad ed = 1 \mod \phi(n)

Private key: \(d \) \quad (always true)

To send a message \(M \) to Bob: Calculate \(C = M^e \mod n \).

To decrypt: Bob computes \(M = C^d \mod n \).
\[C = M^e \mod n \]

\[(M^e)^d = M^{ed} \mod n \]
\[= M^{x \phi(n) + 1} \]
\[= M \cdot M^{\phi(n)} \]
\[= (M^{\phi(n)})x \cdot M \]
\[= 1 \cdot M \]
\[= M \mod n \]

\[\text{Eve knows } n, e, \]
\[\text{Eve knows } C = M^e \]

\[\Rightarrow \text{She can't find } \phi(n). \]
\[\Rightarrow \text{She can't find } d \equiv e^{-1} \mod \phi(n). \]
\[\Rightarrow \text{Can't undo } C \text{ in another way}. \]

Key Size must be pretty big

\(\Rightarrow \text{ECC uses bit key RSA 2048 bit key} \)

\[p = 17, \quad q = 23 \quad n = 391 \]
\[\phi(n) = (p-1)(q-1) = (6 \times 22) = 352 = 2^3 \times 11 \]

Pick \(e \) s.t. \(\gcd(e, 352) = 1 \), \(e = 35 \)

Find \(d \).

\[352 = 10 \times 35 + 2 \]
\[35 = 17 \times 2 + 1 \]
\[35 - 17 \times 2 = 1 \]
\[35 - 17 \left(352 - 10 \times 35\right) = 1 \]
\[35 - 17 \times 352 + 170 \times 35 = 1 \]
\[171 \times 35 - 17 \times 352 = 1 \mod 352 \]
\[d \equiv 171 \mod 391 \]

\[C = 22 \mod 391 \]
\[M = 0 \mod 391 \]