Fall 2012 CIS 3362 Homework #1 Solutions
1) (On Quiz) First we switch x and y in the given encryption function:

x = (23y + 42) mod 62

Now, let’s solve for y:

23y = (x – 42) mod 62

We must now find 23-1 mod 62:

62 = 2 x 23 + 16

23 = 1 x 16 + 7

16 = 2 x 7 + 2

7 = 3 x 2 + 1

7 – 3 x 2 = 1

7 – 3(16 – 2 x 7) = 1

7 – 3 x 16 + 6 x 7 = 1

7 x 7 – 3 x 16 = 1

7(23 – 16) – 3 x 16 = 1

7 x 23 – 7 x 16 – 3 x 16 = 1

7 x 23 – 10 x 16 = 1

7 x 23 – 10(62 – 2 x 23) = 1

7 x 23 – 10 x 62 + 20 x 23 = 1

27 x 23 – 10 x 62 = 1

Considering this equation mod 62, we have:

27 x 23 ≡ 1 (mod 62)

Thus, 23-1 ≡ 27 (mod 62)

Multiply the given equation through by 27:

27(23y) = 27(x – 42) mod 62

y = (27x – 1134) mod 62

y = (27x + 44) mod 62
Thus, the decryption function is f-1(x) = (27x + 17) mod 62

2) It’s probably easiest to write a program to do this task. Roughly speaking, the following segment of code will do the trick, where the appropriate message (with only uppercase letters) is stored in the character array msg:

int i;

for (i=0; i<strlen(msg); i++)

 printf(“%c”, (9*(msg[i] – ‘A’) + 20)%26 + ‘a’));
The result is as follows:
auppckehjjqjfeajqrejqaeejfeisomgdrqkhnqtxsyzqberjfepulcvqw
3) The number of possible keys is a*112, where a is the number of integers in the range [1, 111] that are relatively print to 112. We could cycle through each integer and check the gcd between it and 112 manually, or write a program to do so. The other alternative is to note that 112 = 247. Thus, we must count all values in this range that don’t have a 2 or 7 in their prime factorization. It’s easier to count the numbers that do. For ease of counting, increase our valid range to [1, 112]. Of these values, 112/2 = 56 are divisible by 2 and 112/7 = 16 are divisible by 7. Finally, there are 112/14 = 8 that are divisible by both. Thus, in the range [1, 112], using the Inclusion-Exclusion principle, we find that there are 56 + 16 – 8 = 64 values that have a factor of 2 or 7. It follows that the number of values in the range relatively prime to 112 is 112 – 64 = 48. Thus, the final answer to our question is 112 x 48 = 5376.
Later in the class we’ll learn a nifty formula to calculate φ(n), when n’s prime factorization is known. φ(n) simply equals the number of integers in the range [1, n] that are relatively prime to n.

4) Let f(x) be the decryption function. Using the given information, we can set up two equations:

f(24) = 24a + b ≡ 4 (mod 26)

f(13) = 13a + b ≡ 11 (mod 26)

Subtracting, we get

11a ≡ -7 (mod 26)

Since 11-1 mod 26 ≡ 19, we have:

19(11a) ≡ (-7)19 (mod 26)

a ≡ -133 (mod 26)

a ≡ 23 (mod 26)

Plugging this value into the second equation we get:

13(23) + b ≡ 11 (mod 26)

299 + b ≡ 11 (mod 26)

b ≡ -288 (mod 26)

b ≡ 24

It follows that the decryption function was f(x) = (23x + 24) (mod 26).
5) Let f1(x) = ax + b (mod n) and f2(x) = cx + d (mod n), where gcd(a, n) = gcd(c, n) = 1.

The composition of the two functions is:

f1(f2(x)) = f1(cx + d) = a(cx + d) + b = acx + (ad + b) (mod n)

Since gcd(a, n) = 1 and gcd(c, n) = 1, it follows that gcd(ac, n) = 1. Essentially, if neither a nor c shares a common factor with n, their product can’t either. It follows that the function represented above is a valid affine cipher function, since we can always reduce both ac and (ad + b) mod n to a unique value in the range [0, n-1].

6) Here is one such program in C:

// Arup Guha

// 8/29/2012

// Solution to CIS 3362 Homework #1 Question #6

#include <stdio.h>

int* compose(int* f, int* g, int mod) ;

int identity(int* f);

int main() {

 // I wanted my compose function to return an array...

 int* pair;

 pair = (int*)(malloc(sizeof(int)*2));

 int* orig = (int*)(malloc(sizeof(int)*2));

 // Get affine function from the user.

 printf("Enter a, b.\n");

 scanf("%d, %d", pair, pair+1);

 orig[0] = pair[0];

 orig[1] = pair[1];

 // Loop until we get the identity function.

 int cnt = 0;

 while (!identity(pair)) {

 int* temp = compose(orig, pair, 26);

 free(pair);

 pair = temp;

 cnt++;

 }

 printf("We got to the identity in %d steps.\n", cnt);

 free(pair);

 free(orig);

 return 0;

}

// Calculates and returns f(g(x)).

int* compose(int* f, int* g, int mod) {

 int* ans = (int*)(malloc(sizeof(int)*2));

 ans[0] = f[0]*g[0] % mod;

 ans[1] = (f[0]*g[1] + f[1])%mod;

 return ans;

}

// Returns 1 iff f is the identity function.

int identity(int* f) {

 return f[0] == 1 && f[1] == 0;

}

7) It turns out that this statement is false. Extra credit (10 pts) will be given to anyone who discovered this. You can edit the program above to cycle through all possible values of a and b to detect this is the case. For n = 26, the values of a for which this is false are a = 1, a = 3 and a = 9. There is more than likely a pattern that explains when this statement is true and when it is not, but I am not sure of that pattern.

8) Trying all 26 keys yields the following plain text:

itrustyouwillobtainasolutiontothis
The encryption key was 14 and the decryption key is 12 (or -14).
9) Once again, trying all 312 keys yield the decryption keys a = 7, b = 2. The corresponding encryption keys were a = 15, b = 22. Here is the plaintext:
bruteforceisyourfriendwhenyouonlyhavethreehundredandtwelvepossiblechoice
10) Since we know this is substitution, calculate the letter frequencies first:

	A
	0.6%
	N
	3.1%

	B
	2.8%
	O
	5.4%

	C
	0.3%
	P
	0.6%

	D
	5.7%
	Q
	4.3%

	E
	1.1%
	R
	0%

	F
	4.3%
	S
	10%

	G
	5.1%
	T
	3.7%

	H
	3.4%
	U
	1.7%

	I
	3.7%
	V
	6.8%

	J
	0.3%
	W
	9.1%

	K
	10.8%
	X
	2%

	L
	2.6%
	Y
	0.9%

	M
	7.7%
	Z
	4%

Based on this analysis, it’s likely that K, M, S, V and W map to some of the most common letters in English. We see that the first letter (K) is from this list. Since messages often start with “I”, this is a reasonable guess to make to substitute for K. (The other reasonable guess would be “T”, but the structure of where K appears makes it more likely to be ‘I’.) After several guesses and looking for some common words, such as “hide” and “prize” – you can plug in several letters that will help you uncover the rest of the message. Prize in particular is a key finding, because it’s a common n-gram, yet one of the letters is very uncommon and all the frequencies of the other letters (than the z), correlate to what you might expect. Here is the whole message, decrypted (with spaces):
I typically hide a prize with my different ciphers but did not have time to do so this time. I apologize in advance. Do not worry though, I will definitely hide different prizes for future assignments. Hopefully, you have enough frequency data in this message that you can crack it. Just to help you a bit I will put in this message my two favorite sports teams, which are the Miami Dolphins and the Orlando Magic. Yes, I am quite a loyal fan.
The encryption key is as follows:
Plain:
a b c d e f g h i j k l m n o p q r s t u v w x y z

Cipher:
m a l z s n x d k c j f h g v b p q o w I e u r t y
