Why Learn Unix (or its variations)?

- Many Unix systems (Solaris on Sun workstations, IRIX on SGI workstations, AIX on IBM servers, various versions of Linux on PCs, FreeBSD, OpenBSD)
- Unix provided the basis (since 1970s) for many operating system concepts and features (multi-tasking, shell and scripting, hierarchical file systems)
- Apple Computer's Mac OS X is Unix-based, see a <u>wikipedia</u> <u>article</u>, and a brief Unix timeline
- <u>Mac OS X and Unix articles</u> (tutorial, advanced Unix, how-to's)
- <u>The Law Enforcement and Forensic Examiner's Introduction</u> to Linux, v.3.65 by Barry J. Grundy

Layered Structure of the Unix/Linux Operating System:

Application User Interface (AUI)

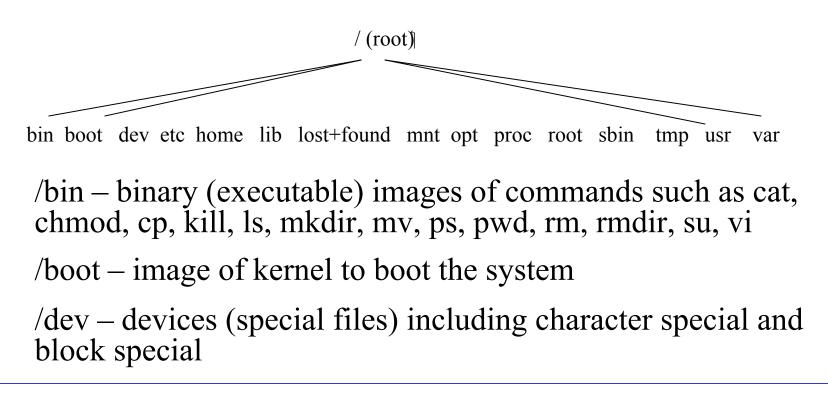
Application programmer's Interface (API)

Operating System **Applications** (GUI, web browser, word processor, ftp, etc.)

Shells (sh, bash, csh, tcsh, etc.)

Language libraries (C, Java, Ada, FORTRAN) System calls (open, close, fork)

Unix kernel:


File system, process manager, memory manager, CPU scheduler

Device drivers

Hardware (CPU, RAM, BIOS, hard disk, CD-ROM, monitor)

Unix file systems:

- The Unix operating system started out as a file system. All system entities are considered as files, including regular files (text or binary), directories, devices, links, pipes, and sockets.
- A typical file system tree looks as follows:

/etc – configuration information

/home – user home directories

/lib – language libraries for C, C++, Java, Ada, FORTRAN

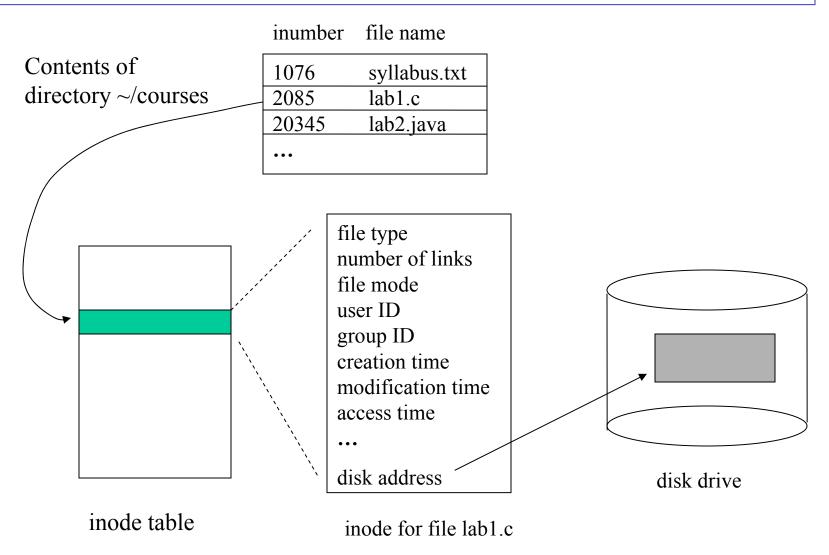
/lost+found – files not connected to other directory, which are found using the tool fsck (file system check)

/mnt – mount points for other file systems such CD-ROM, floppy, using the mount command

/opt – add-on packages

/proc – process (task) information

/root – information about the root (administrator) account


/sbin – system administration tools such as init, shutdown

/tmp – temporary files used by several commands (e.g. editor)

/usr – contains subdirectories bin, doc, include, lib, local, man, src, tmp, shared by all users

/var – variable data such as incoming mail

How are files represented and saved on disk:

Common Unix shells and commands:

• shells with increasing functionality:

sh (Bourne shell) \rightarrow bash (Bourne again shell, used in Linux)

$$ksh (Korn shell) \rightarrow zsh$$

 $csh (C shell) \rightarrow tcsh (TC shell)$

• File-related commands:

ls (list contents of directory, similar to dir in DOS, options include -l for long format, -a to show all files, -R to show files in the entire directory tree, -t to show last modified file first) cat (concatenate and display file, e.g. cat lab1.c)

rm (remove file); mv (move or rename file); mkdir (create directory); rmdir (delete directory file); cd (change directory); pwd (show current or working directory); chmod (change protection mode); chown (change owner)]

• Process-related commands:

ps (report process status))

w or who (display information about logged-in user)

kill (terminate process)

top (display and update top CPU users))

fg (bring background process to foreground)

- editors (vi, pico, emacs))
- special symbols understood by the shell:

< (input redirection, e.g. a.out < data.txt); > (output redirection); >> (append); & (run in the background, e.g. a.out&); | (pipe); wildcard characters such as * (matches all), ? (matches any)

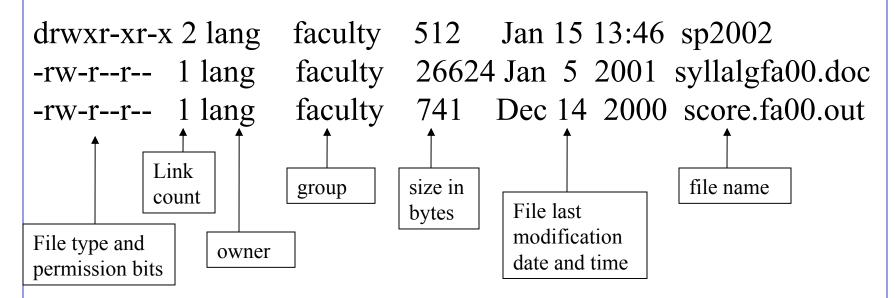
Unix File Security:

password-based protection

Users are identified at login by the user's login name and password; file accesses are then based on the associated user id

encryption-based protection

use crypt or des (data encryption standard) to encrypt files


• access-permission based

Each user has an associated UID (user ID) and GID (group ID); the file permission bits prescribe the access rights to 3 kinds of users: the owner, users in the same group, and others; the owner of the file can change the file's permission bits using the chmod command.

Long listing of files and file permissions:

Consider the output of the ls –lt command:

\$ ls –lt

Note that the file permission bits consists of 10 characters, the first indicates file type (d for directory, - for ordinary, b or c for devices, 1 for symbolic link), the next 9 characters are combinations of r, w, x (and s) in 3 groups.

File access permissions:

r - read access; w - write access; x - execute access (or search for directory files); s - set-user-id turn on (so that when executed the effective user id is temporarily changed to that of the owner's)

Thus, the permission drwxr-xr-x means rwx rights for the owner, r (read) and x (access, search) rights for the group and for others; similarly, the permission -rw-r--r means r (read) and w (write) rights of the owner, r (read) right for group and others.

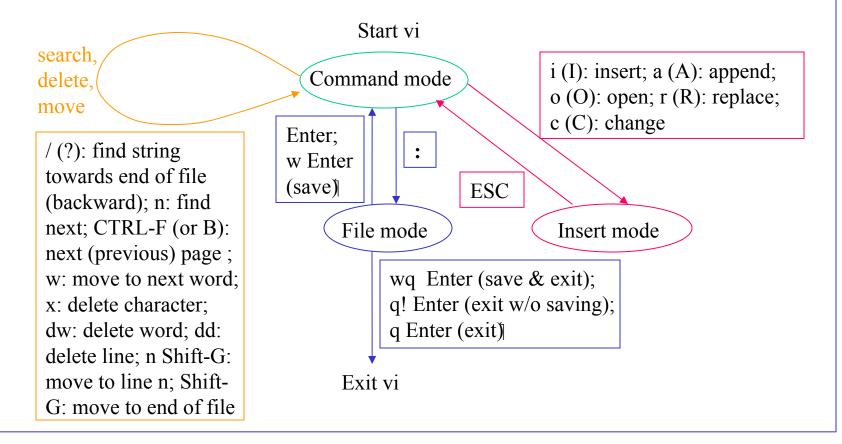
Note that the x permission means access or search for directory files, that is, the right to change directory (cd) to there, to access any file located in that directory, etc. The administrator of a Unix system has a user name 'root' who has access rights to all files.

How to use the chmod command:

- use the letters u (user), g (group), o (others), a (all) for the who; use + (to add), - (to remove) and = (to set) for privileges; or
- use octal (base 8) numbers for combinations of the rwx rights (r = 4, w = 2, and x = 1).

Examples of chmod commands:

chmod 700 * (set rwx rights to user), none to group or others chmod 644 lab1.c (set rw rights to user, read only to group and to others)


chmod u=rwx courses (set rwx rights to user, and keep the same rights for the group and for others)

chmod go-w lab1.c (remove the write access from group and from others, but everything else remains the same)

Advanced File Processing:

- strings find ascii strings in any file; use –n length to specify minimum string length (default 4))
- file determine file type (directory, text, executable, graphics, etc.); check the file /etc/magic for the types of files
- grep or egrep search file for string pattern; egrep allows full regular expressions to specify patterns (e.g., 'pat1|pat2')
- find find files with the specified conditions (e.g. name, access time) with the specified directory tree
- where is locate binary, source, manual files for a command
- which locate command (output its full pathname)
- gzip (gunzip) compress (uncompress files))
- tar create tape archives, add or extract files from a tar file

- dd convert and copy file, disk dump (with specified block size, skipped blocks, and type of conversion)
- more, less browse or page through a file (less is more efficient, and supports editor vi-type commands)
- vi the ubiquitous visual (key-based) editor:

Evidence of a Compromised File System:

• Stolen passwords: download the password file /etc/passwd and crack passwords (this problem is minimized when a password shadow file /etc/shadow is used which contains the encrypted passwords and is not accessible except by the root); use a network sniffer that intercepts user name/password if they are in clear text form; gain root access by exploiting software bugs (there are many such hacker tools)

✓	
% ls -1 /etc/passwd -rrr 1 root 4641701 Jan 18 11:55 passwd	Fields (separated by :) of passwd file entries:
% ls -1 /etc/shadow	Login name
-r 1 root 2307046 Jan 22 06:17 shadow	encrypted password (x if shadow file used)
% less /etc/passwd	UID
root:x:0:1:Super-User:/:/bin/ksh daemon:x:1:1::/:	GID
bin:x:2:2::/usr/bin:	Name, office, phone, etc.
sys:x:3:3::/: adm:x:4:4:Admin:/var/adm:	Home directory
lp:x:71:8:Line Printer Admin:/usr/spool/lp:	login shell

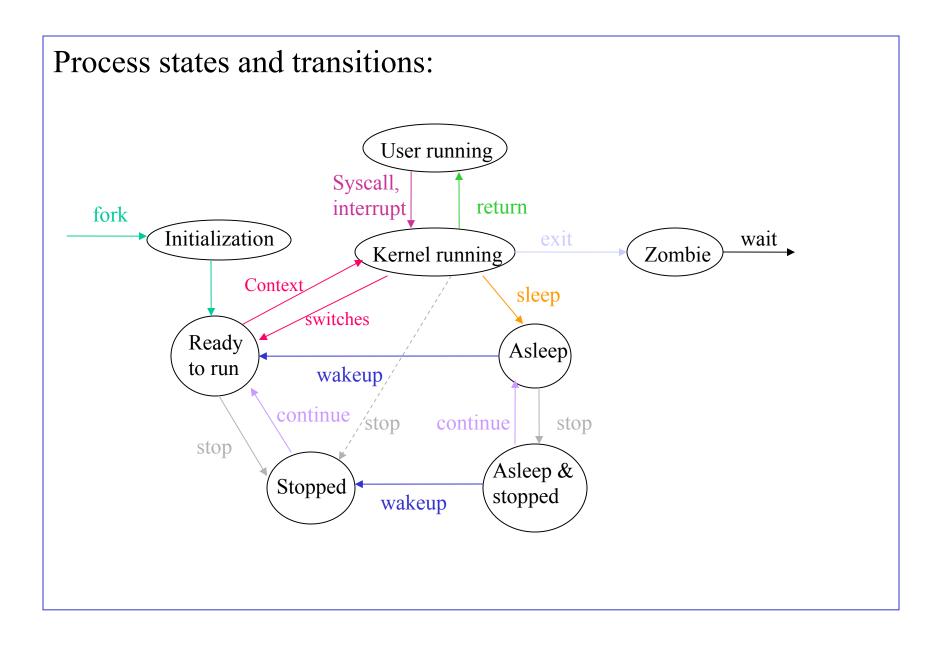
slang:x:8563:80:Sheau-dong Lang:/ucf0/pegasus/s/slang:/bin/csh

% less /etc/shadow

Cannot open /etc/shadow

• Suspicious commands in the history file: the history file saves the most recently used commands of the user (e.g. in file ~/.bash_history under the home directory ~).

• Suspicious events in log files: there are various system log files recording events such as login/logout, root access via su or sudo, ftp and tcp connections, and a general system event logger, located under /var/adm or /var/log but have different names on different Unix systems; on Red Hat Linux all log files are under /var/log and are clearly named.


• Useful information can be found in system configuration files located under /etc which shows scheduled processes, location of syslog file, password files, etc.

• Running processes (tasks) are represented as files under directory /proc where evidence of rogue processes can be found.

Unix Processes:

• An operating system runs many applications, such as a shell (command interpreter), commands submitted to the shell including a user program (an executable file), a GUI, applications started from the GUI, etc., each of these running applications constitutes a process (or task). Thus, a process is a "program" in execution, including the code, data areas (static and dynamic), its status, and associated resources.

• Programs are files, so they are protected by the file's permission bits (rwx); the UID/GID (and effective UID/GID) of the user executing the program stay with it, making system calls to request operating system services (e.g., open/close files, fork another process, create socket for network connections).

Process-related commands:

• ps – report process status (ps shows own processes, "ps aux" shows detailed information of all processes, see below):

% ps aux | more

USER	PID	%CPU	%MEM	SZ	RSS	TT	S	START 7	TIME	COMMAND
root	597	0.4	0.4	4496	2664	?	S	Dec 30	31:44	/usr/sbin/nsr/nsr
root	3	0.4	0.0	0	0	?	S	Dec 30 4	450:07	fsflush
someone	18420	0.3	0.4	4712	2872	pts/46	S	10:38:26	0:00	pine
root	509	0.2	0.4	4976	2888	?	S	Dec 30 2	218:35	/usr/sbin/nsr/nsrd
root	919	0.2	0.8	50984	5344	pts/2	S	Jan 13	55:20.	/nwadmin
root	253	0.1	0.7	7112	4544	?	S	Dec 30 4	413:26	/usr/lib/autofs/au
lang	26671	0.1	0.1	1232	816	pts/3	S	02:46:32	0:02	-csh
root	19144	0.1	0.2	1296	1112	pts/3	0	10:51:20	0:00	ps
auxroot	910	0.0	0.0	288	8	pts/2	Т	Jan 13	0:00	sh daemon
19993	0.0	0.0	0	0	Z	1		0:00 <d< td=""><td>lefunct></td><td>></td></d<>	lefunct>	>

RSS: resident set size (physical memory in Kbytes); TT: the terminal to which the process is attached; S: process status (O: running, S: sleeping, R: runnable, on a ready queue, Z: zombie, T: stopped)

• top – display and update top cpu processes, see example below:

% top

last pid: 21646; load averages: 0.76, 0.36, 0.3011:30:55230 processes: 221 sleeping, 7 stopped, 2 on cpuCPU states: 36.6% idle, 33.7% user, 5.8% kernel, 23.8% iowait, 0.0% swapMemory: 768M real, 26M free, 946M swap in use, 723M swap free

PID USERNAME THR PRI NICE SIZE RES STATE TIME CPU COMMAND

21606	someone	1	0	0	28M 21M	cpu14	1:01	28.06%	netscape
597	root	1	28	10	4496K 2512K	sleep	32:15	0.70%	nsrindexd
21638	lang	1	58	0	2280K 2096K	cpu10	0:04	0.63%	top
253	root	7	10	0	7112K 4536K	sleep	413:50	0.25%	automountd
598	root	2	59	-15	4232K 2512K	sleep	139:33	0.22%	nsrmmd
509	root	1	58	0	4976K 2784K	sleep	218:49	0.20%	nsrd

• kill – terminate a process, see example below:

PID TT S TIME COMMAND

21637 pts/3 S 0:00 a.out 26671 pts/3 S 0:02 -csh 26692 pts/3 T 0:08 elm % kill -9 21637

[2] Killed a.out

• bg – put the currently stopped process (by CTRL-Z) in the background running

• jobs – show the running or stopped jobs

% jobs

[1] - Stopped (signal) elm

[2] + Running a.out

• fg – bring a background job into foreground running

% jobs

- [1] Stopped (signal) elm
- [2] + Running a.out

%~fg~%2

a.out

Note: Information about processes is useful when performing forensic work on "live" systems, e.g., locating processes with strange names, altered system processes, trojan horses.

The /proc file system:

All processes are represented as files located under directory /proc, with each process in a separate subdirectory named by the process id. For example:

% ps aux | wc

227 2672 16655 (that is, there are 227 processes in the system)

% ls /proc | wc

224 224 1212 (there are 224 files in directory /proc)

% ps

```
PID TT
             S TIME COMMAND
25581 pts/3 S 0:00
                     a.out
26671 pts/3 S 0:03
                     -csh
26692 pts/3 T 0:08
                     elm
% ls -ld /proc/25581
dr-x--x--x 5 lang
                     736 Jan 22 12:36 25581 (the long listing of the directory /proc/25581)
% ls -1 /proc/25581
total 854
                   860160 Jan 22 12:36 as
-rw----- 1 lang
                      152 Jan 22 12:36 auxy
-r----- 1 lang
-r----- 1 lang
                       60
                           Jan 22 12:36 cred
                            Jan 22 12:36 ctl
--w----- 1 lang
                        0
lr-x---- 1 lang
                        0
                           Jan 22 12:36 cwd ->
                           Jan 22 12:36 fd
dr-x---- 2 lang
                      416
                      120
                           Jan 22 12:36 lpsinfo
-r--r-- 1 lang
-r----- 1 lang
                      912
                             Jan 22 12:36 lstatus
(continued next slide)
```

-rrr	1 lang	536	Jan 22 12:36 lusage
dr-xr-xr-x	3 lang	48	Jan 22 12:36 lwp
-r	1 lang	960	Jan 22 12:36 map
dr-x	2 lang	288	Jan 22 12:36 object
-r	1 lang	1136	Jan 22 12:36 pagedata
-rr	1 lang	336	Jan 22 12:36 psinfo
-r	1 lang	960	Jan 22 12:36 rma
lr-x	1 lang	0	Jan 22 12:36 root ->
-r	1 lang	1440	Jan 22 12:36 sigact
-r	1 lang	1232	Jan 22 12:36 status
-rr	1 lang	256	Jan 22 12:36 usage
-r	1 lang	0	Jan 22 12:36 watch
-r	1 lang	1520	Jan 22 12:36 xmap

Descriptions of the contents of some of these subdirectories are: status: process state including PID, size, location

pcinfo: information used by the ps command as: process virtual address space

fd: a subdirectory containing one entry for each open file

Note: On a Sun OS system (Solaris), there are proc utility tools (under /usr/proc/bin) that extract and return process information presumably held at the /proc directory.

Mac OS X and Unix articles (tutorial, advanced Unix, how-to's)
The Law Enforcement and Forensic Examiner's Introduction to Linux, v.3.65 by Barry J. Grundy