Example. Convert a very small (in absolute value) decimal number to binary form.

Consider a small value $x = 0.67055225372314453125 \times 10^{-6} = 0.00000067055225372314453125.$

To convert x to binary form, multiply x by 2^{18} as a first try. (Note: Use the exponent 18 for base 2 because it is 3 times of the exponent from base 10, due to the estimate 2^{10} =

 $1024 \approx 10^3$, and the exponent ratio is $\frac{10}{3} \approx 3$): (0. 67055225372314453125 × 10⁻⁶) · (2¹⁸) = 0.17578125.

Try a few more until the result becomes > 1: (0. 67055225372314453125 × 10⁻⁶) · (2¹⁹) = 0.3515625 (0. 67055225372314453125 × 10⁻⁶) · (2²⁰) = 0.703125 (0. 67055225372314453125 × 10⁻⁶) · (2²¹) = <u>1</u>.40625 = y. equals 2^{-21}

We then multiply the decimal portion of the value *y* by 2, then repeating the process: $0.40625 \times 2 = 0.8125$

 $0.8125 \times 2 = 1.625$ equals 2^{-22} equals 2^{-23}

 $0.625 \times 2 = 1.25$ (the "1" equals 2⁻²⁴) $0.25 \times 2 = 0.5$ (the "0" equals 2⁻²⁵) $0.5 \times 2 = 1.0$ (the "1" equals 2⁻²⁶)

Therefore, $x = 0.67055225372314453125 \times 10^{-6} = 2^{-21} + 2^{-23} + 2^{-24} + 2^{-26} = 101101 \times 2^{-21}$