Example. Convert a very small (in absolute value) decimal number to binary form.
Consider a small value $x=0.67055225372314453125 \times 10^{-6}=$ 0.00000067055225372314453125 .

To convert x to binary form, multiply x by 2^{18} as a first try. (Note: Use the exponent 18 for base 2 because it is 3 times of the exponent from base 10, due to the estimate $2^{10}=$ $1024 \approx 10^{3}$, and the exponent ratio is $\frac{10}{3} \approx 3$):
$\left(0.67055225372314453125 \times 10^{-6}\right) \cdot\left(2^{18}\right)=0.17578125$.
Try a few more until the result becomes >1 :
$\left(0.67055225372314453125 \times 10^{-6}\right) \cdot\left(2^{19}\right)=0.3515625$
$\left(0.67055225372314453125 \times 10^{-6}\right) \cdot\left(2^{20}\right)=0.703125$
$\left(0.67055225372314453125 \times 10^{-6}\right) \cdot\left(2^{21}\right)=1.40625=y$.
equals 2^{-21}
We then multiply the decimal portion of the value y by 2 , then repeating the process:
$0.40625 \times 2=\underline{0} .8125$ equals 2^{-22}
$0.8125 \times 2=1.625 \quad$ equals 2^{-23}
$0.625 \times 2=1.25$ (the " 1 " equals 2^{-24})
$0.25 \times 2=\underline{0} .5$ (the " 0 " equals 2^{-25})
$0.5 \times 2=1.0$ (the " 1 " equals 2^{-26})
Therefore,
$x=0.67055225372314453125 \times 10^{-6}=2^{-21}+2^{-23}+2^{-24}+2^{-26}=101101 \times 2^{-21}$

