
PHP/MySQL

Michael Powell

Basic PHP

Echo Statement:
<?php echo “Hello World”; ?>

Variable and Echo:
<?php $var=“Hello World”; echo $var; ?>

Include:
<?php include(menu.php); ?>

MySQL: Things You Need

● Database
– User Name

● Do not use “root”
– Password

● Tables in the Database
– Records/Rows
– Fields/Columns

Databases

● 1 Database can be assigned to a whole site.

● If sections of a website do not need to interact,
they can run just fine with separate databases.

● Separate databases/tables for each user is better
for security.

Tables

● Normally Required:
– Table for Users – If the site has tracking or is

interactive you will need a users table.
– Table for IPs/Logging – Can keep you from having to

look at server logs if security becomes an issue.

● Optional:
– Submissions – Comments or content can be stored.
– Web Pages – Pages can be stored and called on when a

user accesses a certain link.

Columns

● Think of everything you might need in the future,
not what is just required now. This can save you
time from having to change coding later.

● Do not overlap fields. I will not go into depth
about this, but you should not have multiple fields
in different tables storing the same information.
You can call the information through a unique
identifier.

PHP

● When writing the pages decide what will be
duplicated on multiple pages, and put that
information into a file that can be included.

● If you believe the information is going to change
often, then pulling it from a database is normally a
better solution.

● Do not use PHP, if it isn't needed. If you are doing
a simple web page keep it HTML.

HTML Forms

● Text input is the most common.

● Decide if you want a list or set of options for the
visitors, or if you trust them with what they are
putting in.

● Make sure items that are required are marked
required, and return an appropriate error if not
completed.

HTML Form Example

Basic Form Example:

<form METHOD="POST" action="process">
<input type="text">
<input type="submit" value="Submit">
</form>

“process” would actually be process.php. This page
would handle the input from this form.

MySQL Database Connection

● The following commands show you how to
connect, and to generate an error if the connection
fails.

● They also show how to select a database.

● Once you are done you can then “close” the
connection to the database.

MySQL Connect

$connection =
mysql_connect("localhost","user","password");

if (!$connection)
 {
 die('Could not connect: ' . mysql_error());
 }

MySQL Database Selection

● You need to select a database before you can
gather data from it or modify the data it has.

mysql_select_db("database", $connection);

MySQL Close Connection

● This command is not necessary in all situations,
but if you want to close a connection this
command will do that.

mysql_close($connection);

MySQL Insertion

● First, make sure anything being inserted has been
“escaped” so no commands are issued to the
database.

● Second, make sure you put limitations on the
database about what can be stored so invalid
information can not be inserted.

MySQL Escape

● The escape string adds a leading \ to any symbols
used in MySQL commands, this prevents
malicious code from being executed through
HTML forms.

Example:
$var = mysql_real_escape_string($var);

MySQL Insert

● You can enter similar commands to what
PHPMyAdmin generates into mysql_query() to
get the same results.

● When inserting variables make sure you have the
same number of variables as there are columns in
the database.

Example:
mysql_query("INSERT INTO table

VALUES('$var1', '$var2', '$var3')");

MySQL Insert

● If you have problems with your Insert command,
echo what is being executed. You can copy and
paste the command into PHPMyAdmin and it will
give you an explanation of the possible problem.

● If PHPMyAdmin does not return an error, then it
is probably another part of your code.

MySQL Delete

● The delete command can potentially wipe
everything from your table if it is not used
properly. Make sure your WHERE statement is
correct!

mysql_query("DELETE FROM `table` WHERE
`table`.`VAR1` = '$var1'");

MySQL Update

● If you are changing a lot of variables, or if the
number of variables that can change is dynamic, I
normally delete the entry and add it back with all
the new information.

Example:
mysql_query("UPDATE table SET Column1 =

'$var' WHERE Column2 = '$var2'");

MySQL Select

● After you have a connection to the database, you
can select what information you want from the
database with the following command.

● The following command stores the select
statement results to the $result variable.

$result = mysql_query("SELECT * FROM table");

MySQL Select

● You can cycle through all returned entries using a
while loop.

● The below code displays the result from 1 column,
then makes a line break.

while($row = mysql_fetch_array($result))
 {
 echo $row['Column2'];
 echo “
”;
 }

Checks

● Often it is good to have a check in place to make
sure if nothing is being returned, the user knows
that and doesn't assume there was an error.

● The below code echoes a message if nothing is
returned.

if (mysql_num_rows($result) != 0) {
//Action code
}
else echo “Sorry no results were returned.”;

References/Resources

● http://w3schools.com/php/default.asp

● http://www.php.net/manual/en/

http://w3schools.com/php/default.asp
http://www.php.net/manual/en/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

