EnCase exam screenshot showing a file's name in MFT (master file table) of the NTFS file system:

Number system:

- decimal system: e.g., $123=1 * 10^{2}+2 * 10^{1}+3 * 10^{0}$
- binary system: e.g., $1101=1 * 2^{3}+1 * 2^{2}+0 * 2^{1}+1 * 2^{0}=13$ (in decimal)
- hexadecimal system: a base-16 system as an abbreviation for binary system by grouping 4 bits into a hex digit ($0-9$, $A-F$), e.g., 4C2E $=4^{*} 16^{3}+12^{*} 16^{2}+2^{*} 16^{1}+14^{*} 16^{0}=19502$ (in decimal, converted using Windows calculator pad)

Example. An IDE hard disk of size 60 GB (i.e., 60 billion bytes), which has a single partition of size 57207.9 MB (Megabytes). Why is the difference in size?
Answer: $1 \mathrm{~KB}=1,024$ bytes $=2^{10}$ bytes; $1 \mathrm{MB}=2^{20}$ bytes $=$ 1048576 bytes. Thus, $57207.9 * 1048576=59986830950.4 \approx$ 60 billion bytes

Representing negative numbers:

- Two common ways of representing negative numbers are signmagnitude representation and two's-complement notation.
Note: Computers generally use two's-complement notation.
- Sign-magnitude sets the first bit to 1 if it is a negative number (the first bit, then, is not part of the quantity).
- Two's Complement inverts all of the bits and then adds one.

An example of binary arithmetic:

00001101 (13 in decimal)
10001101 (-13 in signed-magnitude notation)
11110010 (invert 0's and 1's for 13)
11110011 (2's complement representation of -13)
(note that $-(-13)=13$, in both representations)
Subtraction works by adding the two's complement of a number (and ignore carry out of the most significant place):

2500011001
$-13+11110011$
$12 \Upsilon 100001100$ ignored

Organization of Multiple-Byte Non-Negative Numbers:

- Numbers larger than 255 require more than 1 byte to represent. Common sizes are 1-byte, 2-bytes (16-bit), 4-bytes (32-bit), and 8-bytes (64-bit).
- Consider the number 954 :
$954=0000001110001010$ (using 16 bits) = 0x03BA (in hexadecimal), with the high (more significant) byte 03 and low byte BA,
$>$ in Big Endian notation, 03 BA (high byte 03 first, then BA), as in Motorola processors, Sun Solaris, and IBM mainframe computers
> in Little Endian, BA 03 (low byte first in the lower address), as in Intel processors.

