CGS 3763: Operating System Concepts Spring 2006

Protection

Instructor :	Mark Llewellyn
	markl@cs.ucf.edu
	CSB 242, 823-2790
	http://www.cs.ucf.edu/courses/cgs3763/spr2006

School of Electrical Engineering and Computer Science University of Central Florida

CGS 3763: OS Concepts (Protection)

Protection and Security

- Operating system consists of a collection of objects, hardware or software.
- Each object has a unique name and can be accessed through a well-defined set of operations.
- Protection problem ensure that each object is accessed correctly and only by those processes that are allowed to do so.
- Guiding principle principle of least privilege
 - Programs, users and systems should be given just enough privileges to perform their tasks

Domain Structure

- Access-right = <*object-name*, *rights-set*> where *rights-set* is a subset of all valid operations that can be performed on the object.
- Domain = set of access-rights

Domain Implementation - Unix

- System consists of 2 domains:
 - User
 - Supervisor
- UNIX
 - Domain = user-id
 - Domain switch accomplished via file system.
 - Each file has associated with it a domain bit (setuid bit).
 - When file is executed and setuid = on, then user-id is set to owner of the file being executed. When execution completes user-id is reset.

CGS 3763: OS Concepts (Protection)

Access Matrix

- View protection as a matrix (*access matrix*)
- Rows represent domains
- Columns represent objects
- Access(i, j) is the set of operations that a process executing in Domain_i can invoke on Object_i

Access Matrix

object domain	F ₁	F ₂	F ₃	printer
<i>D</i> ₁	read		read	
D ₂				print
<i>D</i> ₃		read	execute	
D_4	read write		read write	

CGS 3763: OS Concepts (Protection)

Use of Access Matrix

- If a process in Domain D_i tries to do "op" on object O_j, then "op" must be in the access matrix.
- Can be expanded to dynamic protection.
 - Operations to add, delete access rights.
 - Special access rights:
 - owner of O_i
 - copy op from O_i to O_j
 - control D_i can modify D_j access rights
 - transfer switch from domain D_i to D_j

Use of Access Matrix (cont.)

- Access matrix design separates mechanism from policy.
 - Mechanism
 - Operating system provides access-matrix + rules.
 - If ensures that the matrix is only manipulated by authorized agents and that rules are strictly enforced.
 - Policy
 - User dictates policy.
 - Who can access what object and in what mode.

Implementation of Access Matrix

- Each column = Access-control list for one object.
- Defines who can perform what operation.

Domain 1 = Read, Write Domain 2 = ReadDomain 3 = Read

 Each Row = Capability List (like a key) Fore each domain, what operations allowed on what objects. Object 1 – Read Object 4 – Read, Write, Execute Object 5 – Read, Write, Delete, Copy

CGS 3763: OS Concepts (Protection)

Access Matrix With Domains as Objects

object domain	F ₁	F_2	F ₃	laser printer	<i>D</i> ₁	D ₂	D ₃	<i>D</i> ₄
<i>D</i> ₁	read		read			switch		
D ₂				print			switch	switch
<i>D</i> ₃		read	execute					
<i>D</i> ₄	read write		read write		switch			

CGS 3763: OS Concepts (Protection)

Access Matrix with Copy Rights

Access Matrix With Owner Rights

Modified Access Matrix of Figure B

The control right is applicable only to domain objects. If the control right is available to a domain, it can remove any access right from any domain it controls. In the table shown below, any process executing in domain D_2 can modify domain D_4 . Beginning with the access matrix on page 10, we see that the control right has allowed the removal of the read right in domain D_4 .

object domain	F ₁	F ₂	F ₃	laser printer	<i>D</i> ₁	D ₂	<i>D</i> ₃	D_4
<i>D</i> ₁	read		read			switch		
<i>D</i> ₂				print			switch	switch control
<i>D</i> ₃		read	execute					
<i>D</i> ₄	write		write		switch			

CGS 3763: OS Concepts (Protection)

Access Control

- Protection can be applied to non-file resources
- Solaris 10 provides **role-based access control** to implement least privilege
 - Privilege is right to execute system call or use an option within a system call
 - Can be assigned to processes
 - Users assigned roles granting access to privileges and programs

Revocation of Access Rights

- Access List Delete access rights from access list.
 - Simple
 - Immediate
- *Capability List* Scheme required to locate capability in the system before capability can be revoked.
 - Reacquisition
 - Back-pointers
 - Indirection
 - Keys

CGS 3763: OS Concepts (Protection)

Capability-Based Systems

- Hydra
 - Fixed set of access rights known to and interpreted by the system.
 - Interpretation of user-defined rights performed solely by user's program; system provides access protection for use of these rights.
- Cambridge CAP System
 - Data capability provides standard read, write, execute of individual storage segments associated with object.
 - Software capability -interpretation left to the subsystem, through its protected procedures.

Language-Based Protection

- Specification of protection in a programming language allows the high-level description of policies for the allocation and use of resources.
- Language implementation can provide software for protection enforcement when automatic hardware-supported checking is unavailable.
- Interpret protection specifications to generate calls on whatever protection system is provided by the hardware and the operating system.

CGS 3763: OS Concepts (Protection)

Protection in Java 2

- Protection is handled by the Java Virtual Machine (JVM)
- A class is assigned a protection domain when it is loaded by the JVM.
- The protection domain indicates what operations the class can (and cannot) perform.
- If a library method is invoked that performs a privileged operation, the stack is inspected to ensure the operation can be performed by the library.

Stack Inspection

protection domain:	untrusted applet	URL loader	networking
socket permission:	none	*.lucent.com:80, connect	any
class:	gui: get(url); open(addr);	get(URL u): doPrivileged { open('proxy.lucent.com:80'); } <request from="" proxy="" u=""></request>	open(Addr a): checkPermission (a, connect); connect (a);

CGS 3763: OS Concepts (Protection)

