
Chapter 3: Arithmetic3-1

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Principles of Computer Architecture
Miles Murdocca and Vincent Heuring

Chapter 3: Arithmetic

Chapter 3: Arithmetic3-2

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Chapter Contents
3.1 Overview
3.2 Fixed Point Addition and Subtraction
3.3 Fixed Point Multiplication and Division
3.4 Floating Point Arithmetic
3.5 High Performance Arithmetic
3.6 Case Study: Calculator Arithmetic Using Binary Coded Decimal

Chapter 3: Arithmetic3-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Computer Arithmetic

• Using number representations from Chapter 2, we will explore four
basic arithmetic operations: addition, subtraction, multiplication,
division.

• Significant issues include: fixed point vs. floating point arithmetic,
overflow and underflow, handling of signed numbers, and perfor-
mance.

• We look first at fixed point arithmetic, and then at floating point
arithmetic.

Chapter 3: Arithmetic3-4

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Number Circle for 3-Bit Two’s
Complement Numbers

• Numbers can be added or subtracted by traversing the number
circle clockwise for addition and counterclockwise for subtraction.

• Overflow occurs when a transition is made from +3 to -4 while pro-
ceeding around the number circle when adding, or from -4 to +3
while subtracting.

100

010110

000

111

101 011

001

0

1

2

3

-4

-3

-2

-1

Adding
numbers

Subtracting
numbers

Chapter 3: Arithmetic3-5

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Overflow
• Overflow occurs when adding two positive numbers produces a

negative result, or when adding two negative numbers produces a
positive result. Adding operands of unlike signs never produces an
overflow.

• Notice that discarding the carry out of the most significant bit dur-
ing two’s complement addition is a normal occurrence, and does
not by itself indicate overflow.

• As an example of overflow, consider adding (80 + 80 = 160) 10, which
produces a result of -96 10 in an 8-bit two’s complement format:

 01010000 = 80

+ 01010000 = 80

 10100000 = -96 (not 160 because the sign bit is 1.)

Chapter 3: Arithmetic3-6

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Ripple Carry Adder
• Two binary numbers A and B are added from right to left, creating

a sum and a carry at the outputs of each full adder for each bit po-
sition.

Full
adder

b0 a0

s0

Full
adder

b1 a1

s1

Full
adder

b2 a2

s2

Full
adder

b3 a3

c4

s3

0
c0c1c2c3

Chapter 3: Arithmetic3-7

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Constructing Larger Adders
• A 16-bit adder can be made up of a cascade of four 4-bit ripple-

carry adders.

s0

b1

a1

s1

b2

a2

s2

b3

a3

c4

s3

04-Bit Adder #0

b0

a0

s12

b13

a13

s13

b14

a14

s14

b15

a15

c16

s15

4-Bit Adder #3

b12

a12

. . .
c12 c0

Chapter 3: Arithmetic3-8

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Full Subtractor
• Truth table and schematic symbol for a ripple-borrow subtractor:

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

bi bori

0
0
0
0
1
1
1
1

ai

0
1
1
0
1
0
0
1

diffi

0
1
1
1
0
0
0
1

bori+1

Full
sub-

tractor

bi ai

bori

bori+1

diffi
(ai – bi)

Chapter 3: Arithmetic3-9

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Ripple-Borrow Subtractor
• A ripple-borrow subtractor can be composed of a cascade of full

subtractors.

• Two binary numbers A and B are subtracted from right to left, cre-
ating a difference and a borrow at the outputs of each full
subtractor for each bit position.

b0 a0

diff0

b1 a1

diff1

b2 a2

diff2

Full
sub-

tractor

b3 a3

bor4

diff3

0

Full
sub-

tractor

Full
sub-

tractor

Full
sub-

tractor

bor0

Chapter 3: Arithmetic3-10

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Combined Adder/Subtractor

Full
adder

b0

a0

s0

Full
adder

b1

a1

s1

Full
adder

b2

a2

s2

Full
adder

b3

a3

c4

s3

c0

ADD /
SUBTRACT

• A single ripple-carry adder can perform both addition and subtrac-
tion, by forming the two’s complement negative for B when sub-
tracting. (Note that +1 is added at c0 for two’s complement.)

Chapter 3: Arithmetic3-11

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

One’s Complement Addition
• An example of one’s complement integer addition with an end-

around carry:

+

1

1
0

0

0
1

0

0
1

0

1
0

0

1
1

0

(–12)10
(+13)10

+

0

0

0

0

1

1 (+1)10

End-around carry

• The end-around carry is needed because there are two represen-
tations for 0 in one’s complement. Both representations for 0 are
visited when one or both operands are negative.

Chapter 3: Arithmetic3-12

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Number Circle (Revisited)
• Number circle for a three-bit signed one’s complement represen-

tation. Notice the two representations for 0.

100

010110

000

111

101 011

001

+0

1

2

3

-3

-2

-1

-0

Adding
numbers

Subtracting
numbers

Chapter 3: Arithmetic3-13

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

End-Around Carry for Fractions
• The end-around carry complicates one’s complement addition for

non-integers, and is generally not used for this situation.

• The issue is that the distance between the two representations of
0 is 1.0, whereas the rightmost fraction position is less than 1.

1

0
1

0

1
1

0

0
1

1

1
0

1

.

.

.

(+5.5)10
(–1.0)10

+

 (+4.5)10

1
0

1

+

0

1

0

1

0

.

.

0

1

Chapter 3: Arithmetic3-14

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Multiplication Example
• Multiplication of two 4-bit unsigned binary integers produces an

8-bit result.

1 1 0 1

1 0 1 1×
1 1 0 1

1 1 0 1
0 0 0 0

1 1 0 1

1 0 0 0 1 1 1 1

(11)10

(13)10 Multiplicand M

Multiplier Q

(143)10 Product P

Partial products

• Multiplication of two 4-bit signed binary integers produces only a
7-bit result (each operand reduces to a sign bit and a 3-bit mag-
nitude for each operand, producing a sign-bit and a 6-bit result).

Chapter 3: Arithmetic3-15

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

A Serial Multiplier

Multiplicand (M)

m0m1m2m3

a0a1a2a3 q0q1q2q3

Multiplier (Q)

C

4–Bit Adder

Shift and
Add Control

Logic
Add

4

4

4

Shift Right
q0

A
Register

Chapter 3: Arithmetic3-16

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example of Multiplication Using
Serial Multiplier

C

0

0
0

1
0

0

1
0

0

A

0 0 0

1 1 0 1
0 1 1 0

0 0 1 1
1 0 0 1

0 1 0 0

0 0 0 1
1 0 0 0

1

Q

0 1 1

1 0 1 1
1 1 0 1

1 1 0 1
1 1 1 0

1 1 1 1

1 1 1 1
1 1 1 1

Multiplicand (M):

1 1 0 1
Initial values

Add M to A
Shift

Add M to A
Shift

Shift (no add)

Add M to A
Shift

Product

Chapter 3: Arithmetic3-17

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example of Base 2 Division

1 1

0 0 1 0

0 1 1 1
1 1

0

R 1

1

• (7 / 3 = 2)10 with a remainder R of 1.

• Equivalently, (0111/ 11 = 10) 2 with a remainder R of 1.

Chapter 3: Arithmetic3-18

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Serial Divider

Divisor (M)

m0m1m2m3

a0a1a2a3 q0q1q2q3

Dividend (Q)

5–Bit Adder

Shift and
Add / Sub

Control Logic
Add /

Sub

5

5

5

Shift Left
q0

A
Register

a4

0

a4

Chapter 3: Arithmetic3-19

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Division Example Using Serial Divider

0

0
1

0
0

0

A

0 0 0

0 0 0 0
1 1 0 1

0 0 1 1
0 0 0 0

0

Q

1 1 1

1 1 1 0
1 1 1 0

1 0 0 0
1 0 0 0

Divisor (M):

0 0 1 1
Initial values

Shift left
Subtract M from A

Shift left
Subtract M from A

0 0 0 0 0 1 1 1 0 Restore A (Add M to A)

0
1

0 0 0 1
1 1 1 0

1 1 0 0
1 1 0 0

Shift left
Subtract M from A

0 0 0 0 1 1 1 0 0 Restore A

0 0 0 0 0 1 1 1 0 Clear q0

0 0 0 0 1 1 1 0 0 Clear q0

0 0 0 0 0 1 0 0 1 Set q0

0
1

0 0 0 1
1 1 1 0

0 0 1 0
0 0 1 0

Shift left
Subtract M from A

0 0 0 0 1 0 0 1 0 Restore A
0 0 0 0 1 0 0 1 0 Clear q0

Remainder Quotient

0

Chapter 3: Arithmetic3-20

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Multiplication of Signed Integers

1 1 1 1

0 0 0 1×
1 1 1 1

0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0 1 1 1 1

(+1)10

(–1)10

(+15)10

(Incorrect; result should be –1)

1 1 1 1

0 0 0 1×
1 1 1 1

0 0 0 0
0 0 0 0

0 0 0 0

1 1 1 1 1 1 1 1

(+1)10

(–1)10

(–1)10

1 1 1 1

1 1 1 1
0 0 0
0 0
0

• Sign extension to the target word size is needed for the negative
operand(s).

• A target word size of 8 bits is used here for two 4-bit signed op-
erands, but only a 7-bit target word size is needed for the result.

Chapter 3: Arithmetic3-21

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Carry-Lookahead Addition

Gi = aibi and Pi = ai + bi

c0 = 0

c1 = G0

c2 = G1 + P1G0

c3 = G2 + P2G1 + P2P1G0

c4 = G3 + P3G2 + P3P2G1 + P3P2P1G0

• Carries are represented in terms
of Gi (generate) and Pi (propagate)
expressions.

Chapter 3: Arithmetic3-22

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Carry Lookahead Adder

Full
adder

s0

Full
adder

s1

Full
adder

s2

Full
adder

s3

0
c0

b3 a3b3 a3 b2 a2 b1 a1 b0 a0

G0P1G1P2G2

c1c2c3

P3G3

c4

• Maximum gate delay
for the carry genera-
tion is only 3. The
full adders introduce
two more gate de-
lays. Worst case
path is 5 gate de-
lays.

Chapter 3: Arithmetic3-23

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Floating Point Arithmetic
• Floating point arithmetic differs from integer arithmetic in that ex-

ponents must be handled as well as the magnitudes of the oper-
ands.

• The exponents of the operands must be made equal for addition
and subtraction. The fractions are then added or subtracted as ap-
propriate, and the result is normalized.

• Ex: Perform the floating point operation: (.101 × 23 + .111 × 24)2
• Start by adjusting the smaller exponent to be equal to the larger

exponent, and adjust the fraction accordingly. Thus we have .101
× 23 = .010 × 24, losing .001 × 23 of precision in the process.

• The resulting sum is (.010 + .111) × 24 = 1.001 × 24 = .1001 × 25, and
rounding to three significant digits, .100 × 25, and we have lost an-
other 0.001 × 24 in the rounding process.

Chapter 3: Arithmetic3-24

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Floating Point Multiplication/Division
• Floating point multiplication/division are performed in a manner

similar to floating point addition/subtraction, except that the sign,
exponent, and fraction of the result can be computed separately.

• Like/unlike signs produce positive/negative results, respectively.
Exponent of result is obtained by adding exponents for multiplica-
tion, or by subtracting exponents for division. Fractions are multi-
plied or divided according to the operation, and then normalized.

• Ex: Perform the floating point operation: (+.110 × 25) / (+.100 × 24)2

• The source operand signs are the same, which means that the re-
sult will have a positive sign. We subtract exponents for division,
and so the exponent of the result is 5 – 4 = 1.

• We divide fractions, producing the result: 110/100 = 1.10.

• Putting it all together, the result of dividing (+.110 × 25) by (+.100 ×
24) produces (+1.10 × 21). After normalization, the final result is
(+.110 × 22).

Chapter 3: Arithmetic3-25

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

The Booth Algorithm
• Booth multiplication reduces the number of additions for interme-

diate results, but can sometimes make it worse as we will see.

• Positive and negative numbers treated alike.

0 1 0 1

1 1 1 0

1 0 1 1

1

(14)10

(21)10 Multiplicand

Multiplier

(294)10 Product

1

0

0

0

0

1

0 0 −1 0× Booth recoded
multiplier

+10

Shift
Add

Shift
Subtract

Shift

1111

01010

0 0 1 11001000

(−21 × 2)10

(21 × 16)10

1

00

0

0

0

000

Chapter 3: Arithmetic3-26

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

A Worst Case Booth Example
• A worst case situation in which the simple Booth algorithm re-

quires twice as many additions as serial multiplication.

1 1 1 0

0 1 0 1

1 0 0 1

1

(21)10

(14)10 Multiplicand

Multiplier

(294)10 Product

0

1

1

0

0

1

+1 −1 +1 −1× Booth recoded
multiplier

−1+1

Add

Subtract

1111

00000

0 0 1 11001000

(−14 × 1)10

(14 × 2)10

1

00

0

0

0

011

1 0 0 1

1

11111

00000 0

0

011

1 0 0 1

1

111

000 0

0

011 0

0

0

0

0

0

0

0

0

0

0

0 (−14 × 4)10

(14 × 8)10

(−14 × 16)10

(14 × 32)10

Chapter 3: Arithmetic3-27

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Bit-Pair Recoding (Modified Booth
Algorithm)

1 1 1 0

0 1 0 1

0

(14)10

(21)10 Multiplicand

Multiplier

(294)10 Product

0

1

0

0

+1 −1 +1 −1× Booth recoded multiplier−1+1

00000

0 0 1 11001000

(14 × 1)1000

0

0111

0 1 1 1

1

00000

10000 0

0

001 0

0

0

0 (14 × 4)10

(14 × 16)10

Bit pair recoded multiplier+1 +1+1

Chapter 3: Arithmetic3-28

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

0
0
0

+1
+1
+1
−1
−1
−1

0
+1
−1

0
+1
−1

0
+1
−1

=
=
=
=
=
=
=
=
=

0
+1
−1
+2
––
+1
−2
−1
––

Recoded
bit pair (i)

Booth pair
(i + 1, i)

Corresponding
multiplier bits
(i + 1, i, i − 1)

000 or 111
001
110
011

010
100
101

Coding of Bit Pairs

Chapter 3: Arithmetic3-29

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Parallel
Pipelined
Array Mul-

tiplier

. . .

q 0 q 0 q 0 q 0

0 0 0 0 0 0 0 0
m0m1m2mw

Multiplicand

0
. . .

p 0

q 1 q 1 q 1 q 1

p1

q w q w q w q w

. . .

0

p2w-1

pw+3
pw+2 pw+1

0

p w

.

.

.

.

.

.

.

.

.

M
ultiplier

Product

0

Full
adder

Carry-in

Carry-out

sum

qj

aj bj

m out

mi

mi

PP 0,w PP 0,2 PP 0,1 PP0,0

PP1,w PP1,2 PP1,1 PP1,0

PPw,w PPw,2 PPw,1 PPw,0

FA FA FA FA
w+1,0w+1,1w+1,2w+1,wPP PP PP PP

Chapter 3: Arithmetic3-30

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Newton’s Iteration for Zero Finding
• The goal is to find where

the function f(x) crosses
the x axis by starting
with a guess xi and then
using the error between
f(x i) and zero to refine
the guess.

• A three-bit lookup table
for computing x0:

f(x)

x
xi+1x i

.100 2 10

B = First three
bits of b

Corresponding
lookup table entry

Actual base 10
value of 1/B

.101 1 3/5 01

.110 1 1/3 01

.111 1 1/7 01

• The division operation a/b
is computed as a × 1/b.
Newton’s iteration pro-
vides a fast method of
computing 1/ b.

Chapter 3: Arithmetic3-31

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Residue Arithmetic
• Implements carryless arithmetic (thus fast!), but comparisons are

difficult without converting to a weighted position code.

• Representation of the first twenty decimal integers in the residue
number system for the given moduli:

Decimal Residue Decimal Residue
5794

0 0000 10 0312

5794

1 1111 11 1423
2 2222 12 2530
3 3333 13 3641
4 4440 14 4052
5 0551 15 0163
6 1662 16 1270
7 2073 17 2381
8 3180 18 3402
9 4201 19 4513

Chapter 3: Arithmetic3-32

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Examples of Addition and Multiplica-
tion in the Residue Number System

Decimal Residue
5794

29 4121
27 2603
56 1020

29 + 27 = 56

Decimal Residue
5794

10 0312
17 2381

170 0282

10 × 17 = 170

Chapter 3: Arithmetic3-33

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

16-bit Group Carry Lookahead Adder
• A16-bit GCLA is composed of four 4-bit CLAs, with additional logic

that generates the carries between the four-bit groups.

GG0 = G3 + P3G2 + P3P2G1 + P3P2P1G0

GP0 = P3P2P1P0

c4 = GG0 + GP0c0

c8 = GG1 + GP1c4 = GG1 + GP1GG0 + GP1GP0c0

c12 = GG2 + GP2c8 = GG2 + GP2GG1 + GP2GP1GG0 +

GP2GP1GP0c0

c16 = GG3 + GP3c12 = GG3 + GP3GG2 + GP3GP2GG1 +

GP3GP2GP1GG0 + GP3GP2GP1GP0c0

Chapter 3: Arithmetic3-34

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

16-Bit Group Carry Lookahead Adder

• In the GCLL section, GG and GP signals are generated in 3 gate
delays; carry signals are generated in 2 more gate delays, result-
ing in 5 gate delays to generate the carry out of each GCLA group
and 10 gates delays on the worst case path (which is s15 – not c 16).

c16
Group Carry Lookahead Logic

CLA0

4

a0 – a3

4

b0 – b3

4

s0 – s3

GG0GP0

CLA1

4

a4 – a7

4

b4 – b7

4

s4 – s7

GG1GP1

CLA2

4

a8 – a11

4

b8 – b11

4

s8 – s11

GG2GP2

CLA3

4

a12 – a15

4

b12 – b15

4

s12 – s15

GG3GP3

c4c8c12

c0

• Each CLA
has a long-
est path of
5 gate de-
lays.

Chapter 3: Arithmetic3-35

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

HP 9100 Series Desktop Calculator
• Source: http://www.teleport.com/ ~dgh/91003q.jpg.

• Uses binary coded decimal (BCD) arithmetic.

Chapter 3: Arithmetic3-36

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Addition Example Using BCD
• Addition is performed digit by digit (not bit by bit), in 4-bit

groups, from right to left.

• Example (255 + 63 = 318) 10:

0 0 0 0

(0)10

0 0 1 0

(2)10

0 1 0 1

(5)10

0 1 0 1

(5)10

(+255)10

0 0 0 0

(0)10

0 0 0 0

(0)10

0 1 1 0

(6)10

0 0 1 1

(3)10

(+63)10+

0 0 0 0

(0)10

0 0 1 1

(3)10

0 0 0 1

(1)10

1 0 0 0

(8)10

(+318)10

0 1 0 0 Carries

Chapter 3: Arithmetic3-37

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Subtraction Example Using BCD
• Subtraction is carried out by adding the ten’s complement nega-

tive of the subtrahend to the minuend.

• Ten’s complement negative of subtrahend is obtained by adding 1
to the nine’s complement negative of the subtrahend.

• Consider performing the subtraction operation (255 - 63 = 192) 10:

0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 (+255)10

1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 (−63)10+

0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 (+192)10

1 0 1 0 Carries1

1

Discard carry

9 9 9 9
0 0 6 3

9 9 3 6

−

9 9 3 6
0 0 0 1

9 9 3 7

+

Chapter 3: Arithmetic3-38

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Excess 3 Encoding of BCD Digits

• Using an
excess 3
encoding
for each
BCD digit,
the leftmost
bit indi-
cates the
sign.

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
1
2
3
4
5
6
7
8
9
d
d
d
d
d
d

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

BCD Bit
Pattern

Normal BCD
value

Positive
numbers

d
d
d
0
1
2
3
4
5
6
7
8
9
d
d
d

Excess 3
value

Negative
numbers

Chapter 3: Arithmetic3-39

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

A BCD Full Adder
• Circuit adds

two base 10
digits repre-
sented in
BCD. Adding
5 and 7
(0101 and
0111) results
in 12 (0010
with a carry
of 1, and not
1100, which
is the binary
representa-
tion of 12 10).

Full
adder

b0 a0

Full
adder

b1 a1

Full
adder

b2 a2

Full
adder

b3 a3

c4

0
c0

Full
adder

s0

Full
adder

s1

Full
adder

s2

Full
adder

s3

01

Chapter 3: Arithmetic3-40

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Ten’s Complement Subtraction
• Compare: the traditional signed magnitude approach for adding

decimal numbers vs. the ten’s complement approach, for
(21 - 34 = -13)10:

+

0

9

9

0

9

9

2

6

8

1

6

7

Ten’s Complement

−
−

0

0

0

0

0

0

2

3

1

1

4

3

Signed Magnitude

Chapter 3: Arithmetic3-41

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

BCD Floating Point Representation
• Consider a base 10 floating point representation with a two digit

signed magnitude exponent and an eight digit signed magnitude
fraction. On a calculator, a sample entry might look like:

-.37100000 × 10-12

• We use a ten’s complement representation for the exponent, and a
base 10 signed magnitude representation for the fraction. A sepa-
rate sign bit is maintained for the fraction, so that each digit can
take on any of the 10 values 0–9 (except for the first digit, which
cannot be zero). We should also represent the exponent in excess
50 (placing the representation for 0 in the middle of the expo-
nents, which range from -50 to +49) to make comparisons easier.

• The example above now looks like this (see next slide):

Chapter 3: Arithmetic3-42

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

BCD Floating Point Arithmetic
• The example in the previous slide looks like this:

Sign bit: 1

Exponent: 0110 1011

Fraction: 0110 1010 0100 0011 0011 0011 0011 0011 0011

• Note that the representation is still in excess 3 binary form, with a
two digit excess 50 exponent.

• To add two numbers in this representation, as for a base 2 floating
point representation, we start by adjusting the exponent and frac-
tion of the smaller operand until the exponents of both operands
are the same. After adjusting the smaller fraction, we convert ei-
ther or both operands from signed magnitude to ten’s comple-
ment according to whether we are adding or subtracting, and
whether the operands are positive or negative, and then perform
the addition or subtraction operation.

