Appendix A: How a CISC Processor Works

[image: image1.png]

The numbers below refer to the numbers in the diagram above.

1. Built into a CISC microprocessor’s ROM is a large set of microprograms each of which contain micro-instructions or micro-operations that must be carried out to perform a single instruction, such as the adding of two numbers or moving a string of text from one location in memory to another. Whenever the operating system or application program requires the CPU to perform an instruction, the details of what the CPU will need, including the name of the instruction to be executed will be sent to the CPU as a CISC instruction. These commands will be of varying size.

2. Because CISC instructions are not all the same size, the control unit will examine the instruction and determine the number of bytes of memory the command will require and will set aside that much memory. CISC instructions will provide many different ways that an instruction can be loaded and stored and the control unit must determine the correct technique for each instruction. Both of these tasks will require time that ultimately slows down CISC processors.

3. The control unit sends the instruction received from the OS or the application to a decode unit, which will translate the complex command into microcode to be executed by the nanoprocessor. The nanoprocessor is like a processor within a processor and is specifically designed to handle microinstructions.

4. Since an instruction may depend upon the results of another instruction, the instructions are performed one at a time. All other instructions stack up until the current instruction is completed.

5. The nanoprocessor executes each of the microinstructions from the microprogram through circuitry that can be quite complex. A particular instruction may need to pass through several different steps before it is completely executed. Moving through complex digital circuitry also requires time (remember our earlier discussion about gate delays). CISC processors typically require between four and ten clock cycles to execute a single instruction from the machine’s instruction set. As an extreme case, the Intel 80386 microprocessor contains several mathematical operation instructions that require 43 clock cycles to execute!

Appendix B: How RISC Processors Work

[image: image7.png])

INSTRUCTION 1 INSTRUCTION 2 INSTRUCTION 3 |TEMPLATE
INSTRUCTION 1 INSTRUCTION 2 INSTRUCTION 3 | TEMPLATE
INSTRUCTION 1 INSTRUCTION 2 INSTRUCTION 3 | TEMPLATE]|

R1

#

PREDICATE
REGISTER

Instructions
can be
chained
together

The numbers below refer to the numbers in the diagram above.

1. Command functions built-in to a RISC processor consist of several small, discrete operations that perform only a single task. Application software, which must be recompiled especially for a RISC processor, performs the task of telling the control unit which combination of its smaller operations to execute in order to complete the execution of the instruction. All RISC instructions are the same size, and there is only one way in which they can be loaded and stored. In addition, each operation is already in the form of microcode (each operation does only a single, simple task), so the RISC processors don’t require the extra step of passing the instructions through a decoder to translate complex instructions into simpler microcode. As a result of these three differences, RISC instructions are loaded for execution far more quickly than CISC instructions can be loaded.

2. During the compilation of software specifically designed for a RISC chip, the compiler will determine which instructions will not depend on the results of other instructions. Because these instructions will not have to wait on other instructions to complete, the control unit can simultaneously execute many instructions in parallel. Current implementations of this will allow as many as 20 instructions to be executed in parallel.

3. Since the RISC processor is dealing with instructions which are simpler than those found in its CISC counterpart, its circuitry can also be kept simple. RISC instructions pass through fewer total transistors on shorter circuits, and therefore are executed more quickly than the CISC instructions. The result is that RISC processors usually only require a single clock cycle for each operation. The total number of clock cycles required to execute an instruction is dependent upon the number of the smaller operations that make up the execution sequence for that instruction. However, for a comparable operation (i.e., comparing and ADD instruction) the time required to interpret and execute RISC instructions is far less than the time required to load and decode a CISC command and then execute each of its components.

Appendix C: Early Intel Math Co-processors

	microprocessor
	math coprocessor

	8086
	8087

	8088
	8087

	80286
	80287

	386DX
	387DX

	386SX
	387SX

	486DX
	none required

	486SX
	487

Appendix D: Intel's Family of Microprocessors

This appendix briefly describes the main design characteristics of the Intel x86 line of microprocessors on which the CPU of virtually all PCs are based. More specific details of each processor are available from Intel (www.intel.com).

8088 CPU: First CPU for IBM PC and XT models (1981)

8 bit data bus, 16 bit internal calculations

could address only 1 MB of memory (in 64 KB segments)

operated at 4.77 MHz (some clones operated at 10 MHz)

optional 8087 math coprocessor was available

80286 CPU: First used in IBM AT (Advanced Technology) (1982)

16 bit data bus, 16 bit internal calculations

could access up to 16 Mbytes of memory

various operating speeds possible - 6, 8, 10, 16, 20 MHz

protected mode allows multitasking, but little software supported it

DOS is based on 8088 architecture and can't run protected mode

optional 80287 math coprocessor was available

80386 CPU: 386 DX processes 32 bits at a time internally, has 32 bit data bus

 386 SX processes 32 bits at a time internally, but has 16 bit data bus

 could access up to 4 Bytes memory (w/o using 64KByte segments)

 various operating speeds 16, 20, 25, 33, 40 MHz

 supported both real and protected modes

 added virtual 8086 mode - can multitask DOS

 16 bytes prefetch cache - "scratchpad memory" for CPU

 optional 80387 math coprocessor was available

80486 CPU: includes all features of 386 DX

 32 bit data bus and 32 bit internal calculations

 includes built-in cache for instructions and data (8KBytes for each)

 486 DX operating speeds 25, 33, 40, 50 MHz

 486 DX2 - CPU runs at twice clock speed: 50, 66, 80 MHz

 486 DX4 - CPU runs at three times clock speed: 75, 100, 120 MHz

 486 DX has built-in math coprocessor, 486 SX does not

 486 contains 1.2 millions transistors

80586 CPU: Pentium

 provides both real and protected modes

 64 bit data bus, faster system bus (50, 60, 66 MHz)

 CPU operating speeds 60, 66, 75, 90, 100, 120, 133 MHz

 pipeline - allows overlapping execution of instructions (superscalar)

 System Management Mode (SMM) provides more hardware control

 contains 3.1 million transistors with 273 connections to system board

 built-in 8 KB data and 8 KB instruction caches

 built-in math coprocessor (built-in errors on old Pentium chips)

80686 CPU: Pentium Pro

 all of the features of the Pentium with better pipeline

 5.5 million transistors

 operating speeds 150, 200 MHz

 internal cache as large as 512 Kbytes

 built-in math coprocessor

 actually runs slower than Pentium with 16 bit software

(DOS, Windows 3.1)

Appendix E: Intel Itanium (IA-64 based) Microprocessor

Overview

Intel has essentially reached the end of development of the IA-32 ISA and hence the Pentium family of processors. Newer Pentiums will benefit from advances in manufacturing technology, smaller transistors and hence faster clock speeds, however, finding new ways to achieve significant speed-up will prove harder and harder under the restrictions of the IA-32 ISA. To achieve truly significant speed-up will require an entirely new ISA. This is where IA-64 enters the picture. Jointly developed by Intel and Hewlett-Packard, this new architecture is a full 64-bit machine from beginning to end. The earliest implementations of IA-64 were dubbed Merced, but Intel has seemingly decided on Itanium for the first real implementations of this new architecture. While we are focusing here on Intel’s version of a 64-bit chip, keep in mind that the architecture is not proprietary to Intel. The basic ideas behind IA-64 are well known amongst microprocessor designers and will undoubtedly surface in other manufacturer’s designs, several of which already have experimental versions running.

Problems with the IA-32 ISA that the IA-64 ISA will not face

The basic problem with the IA-32 is the now ancient ISA upon which it is based which has all the wrong properties for modern processors geared toward high speed. The IA-32 ISA is a CISC ISA with variable-length instructions and a wide variety of instruction formats that are difficult to decode quickly. Current technology works best with RISC ISAs that have one instruction length and an easily decoded fixed length opcode. The IA-32 instructions can be broken down into RISC-like micro-operations ((ops) at execution time, but doing this requires hardware (chip area), takes time (slower), and adds complexity to the overall design.

The IA-32 is also a two-address memory-oriented ISA. Most of the instructions in the instruction set reference memory, and most programmers (and compilers) think nothing of referencing memory all the time. Current technology favors load/store ISAs that only reference memory to fetch operands into registers but otherwise perform all their calculations using three-address memory register calculations. As CPU clock speeds continue to increase at a much faster rate than the speed of the memory, this problem will only get worse for the IA-32.

The IA-32 has a fairly small and irregular register set. This causes great problems for compilers (particularly for optimizing compilers), but even worse is that the small number of general purpose registers (between four and six) requires intermediate results to be spilled into memory all the time, which generates extra memory references even when they are not logically needed. The small number registers causes many dependencies, particularly WAR dependencies (write-after-read), because results have to go somewhere after they are produced and there are no extra registers available. Getting around this problem has been handled, in the Pentium design, via renaming registers (see earlier section of the notes). This is basically means that versions of the register contents are present in the reorder buffer – this is a hack if there ever was one. To avoid blocking on cache misses too often as a result, instructions have to be executed out of order. However, the IA-32’s semantics specify precise interrupts, so the out-of-order instructions must be retired in order. To do all of this requires some very complex hardware, further complicating chip design and of course, occupying space. To do all of this work quickly requires a very deep (12-stage) pipeline. This means that instructions are entered into the pipeline 11 clock cycles before they will be finished. Consequently, very accurate branch prediction is required to make sure that the right instructions are actually being entered into the pipeline. An inaccurate prediction can prove very costly to the overall performance as the pipeline will need to be flushed and refilled. To alleviate the problems that an inaccurate branch prediction can cause, the processor must to speculative execution, with all of its ensuing problems (this can be particularly troublesome when a memory reference along an incorrect path causes an exception).

On top of all the problems mentioned above, the IA-32 has fundamental problems that, when it was introduced, did not seem to be problems at all. For example, the 32-bit addresses limit individual programs to 4 GB of memory, which is a very real concern on high-end servers.

The problem with IA-32 is analogous to the problems that faced celestial mechanics just prior to the arrival of Copernicus. At the time, the main theory that dominated astronomy was that the Earth was fixed and motionless in space and that the planets moved in circles with epicycles around it. However, as observations got better and more deviations from the model could be clearly observed, epicycles where added to epicycles, until the whole model just collapsed from its internal complexity. This is essentially what Intel, AMD, and other microprocessor designers are facing today. A huge fraction of the transistors on the Pentium II and III are devoted to decomposing CISC instructions, figuring out what can be done in parallel, resolving conflicts, making predictions, repairing the consequences of incorrect predictions and other bookkeeping operations, leaving surprisingly few transistors for doing the real work the user asked for in the first place. The ultimate conclusion that microprocessor designers have been faced with is: junk the IA-32 and start all over with a clean slate which is the IA-64.

Features of the IA-64

The starting point for the IA-64 was a high-end 64-bit RISC processor (of which the UltraSPARC II is one of many current examples). Since Hewlett-Packard has contributed heavily to IA-64, their own PA-RISC architecture also influenced the ultimate design of IA-64. The Itanium version of IA-64 will be a dual mode processor capable of running both IA-32 and IA-64 programs (manufacturers couldn’t convince themselves to sever all ties to 32-bit architectures).

The IA-64 is a load/store architecture with 64-bit addresses and 64-bit wide registers. There are 64 general purpose registers available to IA-64 programs. All instructions have the same fixed format: an opcode, two 6-bit source register fields, a 6-bit destination register field, and an additional 6-bit field (mentioned later). Most instructions take two register operands, perform some computation on them, and place the result into the destination register. Many functional units are available for doing different operations in parallel.

One of the novel ideas originating in the IA-64 design is the concept of a bundle of related instructions. Instructions come in groups of three, called a bundle, Each 128-bit bundle consists of three 40-bit instructions and an 8-bit template (see figure below).

[image: image2.png]

Bundles can be chained together using an end-of-bundle bit, so more than three instructions can be present in one bundle. The template contains information about which instructions can be executed in parallel. This technique, along with the presence of a large number of general registers, allows the compiler to isolate blocks of instructions and tell the processor that they can be executed in parallel. Thus, it is the compiler that does the reordering of the instructions, checks for dependencies, and makes sure there are functional units available, instead of the hardware. The basic idea is that by exposing the internal workings of the processor and telling the compiler writers to make sure that each bundle consists of compatible instructions, the job of scheduling the RISC instructions is moved from the hardware (a run-time environment) to the compiler (a compile-time environment). For this reason, the model is called EPIC (Explicitly Parallel Instruction Computing).

There are several reasons why instruction scheduling at compile-time provides a performance improvement compared to run-time scheduling. First, since the compiler is now doing all the work, the hardware can be much simpler. This alone can save millions of transistors that can be shifted to other more important functions, such as larger Level 1 caches. Second, for any particular program, the scheduling has to be done only once, at compile time, rather than every time the program is to be executed. Third, since the compiler is doing all the work, it will be possible for a software vendor to use a compiler that may spend hours optimizing the program and have every user who purchases the software benefit every time the program is run. Fourth, the processor can begin scheduling instructions from a new bundle before all the instructions from the previous bundle have completed. While it will still need to be sure that there are sufficient registers and functional units to do so, it will not need to check if any of the instructions in the new bundle are in conflict with instructions from the already executing bundle because the compiler has already guaranteed that this is not the case!

Another important feature of IA-64 is how it deals with conditional branches. If you could do away with conditional branches altogether, then CPUs could be simpler and faster. At first glance, it would seem that it would be impossible to get rid of them altogether since programs are often full of if statements (a conditional branch instruction). However, IA-64 makes use of a technique called predication that can greatly reduce the number of conditional branches that appear in a given program. In current machines, all instructions are unconditional in the sense that when the CPU hits an instruction, it simply executes that instruction. In contrast, in a predicated architecture, instructions contain conditions (predicates) which indicate when the instruction should be executed and when it should not be executed. This shift from unconditional instructions to predicated instructions makes it possible to eliminate many conditional branch instructions from code. Instead of needing to make a choice between one sequence of unconditional instructions or another sequence of unconditional instructions, all the instructions are merged inot a single sequence of predicated instructions, using different predicates for different instructions. A simple example should clarify the concept of predicated instructions.

Example: Consider the following if statement.

if (R1 == 0)

 R2 = R3;

Converted to generic assembly language this if statement becomes:

CMP R1, 0

BNE L1

MOV R2, R3

L1: …

Notice that this code contains a comparison, a conditional branch, and a move instruction. The conditional form of this code is:

CMOVZ R2, R3, R1

In the conditional form, the conditional branch is removed and replaced by a new instruction CMOVZ, which is a conditional move instruction. What it does is check to see if the third register R1 is equal to 0. If this is true, it then copies R3 to R2. If this is not true, it does nothing. Once a conditional instruction such as this has been developed, it becomes easy to develop similar ones such as CMOVN, which is a conditional move when the compared register is NOT equal to zero. Consider the following more complex example:

if (R1 == 0)

CMP R1, 0

CMOVZ R2, R3, R1

 { R2 = R3;

BNE L1

CMOVZ R4, R5, R1

 R4 = R5; }

MOV R2, R3

CMOVN R6, R7, R1

else

MOV R4, R5

CMOVN R8, R9, R1

 { R6 = R7;

BR L2

 R8 = R9;

L1:
MOV R6, R7

 }

MOV R8, R9

L2:

high-level code

generic assembly version

conditional code
In the conditional execution version of this code, there are no conditional branch instructions. The instructions can even be reordered, the only catch is that the condition must be known by the time the conditional instructions need to be retired (near the end of the instruction execution pipeline). In the IA-64, all instructions are predicated. This means that the execution of every instruction can be made conditional. The template field that was shown earlier, selects one of 64 one-bit predicate registers. Thus, an if statement will be compiled into code that sets one of the predicate registers to 1 if the condition is true and to 0 if it is false. Simultaneously and automatically, it sets another predicate register to the inverse value. Using predication, the machine instruction forming the then and else clauses will be merged into a single stream of instructions, the former ones using the predicate and the latter ones using its inverse. Now consider the final if statement and its generic assembly language equivalent:

if (R1 == R2)

CMP R1, R2

 R3 = R4 + R5;

BNE L1

else

MOV R3, R4

 R6 = R4 – R5;

ADD R3, R5

BR L2

L1:
MOV R6, R4

SUB R6, R5

L2:

high-level code

generic assembly code

Converted to predicated instructions the code above becomes:

CMPEQ R1, R2, P4

<P4> ADD R3, R4, R5

<P5> SUB R6, R4, R5

Where the CMPEQ instruction compares two registers and sets the predicate register P4 to 1 if they are equal and to 0 if they are not equal. It also sets its paired register, P5, to the inverse condition. Now the instructions for the then and else parts can be put one after the other, each one predicated on some predicate register.

In the IA-64 architecture, the idea of predication is taken to the extreme, with comparison instructions for setting the predicate registers as well as arithmetic and other instructions whose execution is dependent on some predicate register. Predicated instructions can be pushed into the pipeline in sequence, with no stalls and no problems. The way the IA-64 actually implements this technique is to execute every instruction. At the end of the pipeline, when it is about to retire an instruction, a check is made to see if the predicate is true. If so, the instruction is retired normally and its results are written back to the destination register. If the predicate is false, no writeback is done so the instruction has no effect.

Appendix F: Other Microprocessor Manufacturers

AMD
Advanced Micro Devices was founded in 1969 and first began to produce microprocessors in 1975 when it released a reverse-engineered version of the Intel 8088 chip. Although this put the two companies into direct competition - they entered into a patent cross-licensing agreement in 1977 to take advantage of each other's designs. The two companies became even closer when IBM demanded a second source for Intel's 8088 microprocessor before they would agree to put it into their PCs. IBM was not sure that Intel would stay in business and would not build a product without a chip supplier. Thus, Intel agreed to let AMD to second source the 8088. Intel also granted AMD the right to produce the 80286 chip. By the time the 80386 was unveiled, Intel had secured its place in the semiconductor industry and never granted AMD the right to produce the 386 chips. Nevertheless, AMD developed its own version of the 386 chip using its own hardware design and Intel's microcode. The circuit design that AMD developed was slightly more efficient and used less power than Intel's chips. Intel quickly sued. According to AMD, contracts between the two enabled AMD to use all of Intel's designs and patents through 1995 (a right for which AMD paid Intel roughly $350,000 or 35% of its profits in 1975 when the contract was signed). Intel claimed that the contract gave AMD the right only to copy Intel's microcode, not to distribute it and further claimed a trademark on the designation "386". On March 1, 1991, the court ruled that the numbers were generic enabling AMD and other companies to call their clone chips 386s. On February 24, 1992, an arbitrator awarded AMD the right to use Intel's 386 microcode without royalty or dispute, but AMD got no rights to Intel's technology.

The AMD K5 chip (a 586 generation chip) unlike the Pentium adopts a RISC core and uses translation logic to convert Intel instructions into RISC operations. The K5 is socket compatible with the Pentium and consequently the control for L2 cache is left to external circuitry. The FPU is integrated into the K5 silicon and uses the same core logic that was developed for the highly regarded AMD 29000 RISC processor. The K5 contains a six-stage pipeline that can simultaneously process four instructions. The six stage pipe contains two ALUs, one FPU, two load/store units, and a branch unit. Although the K5 was supposed to out-perform the Pentium at the same clock speed, the commercial chips have proven somewhat disappointing. The K5 chips have only been able to match the 133 MHz Pentiums. Current models of the K5 operate with processor speeds of 1.5 or 2.0 times that of the external bus speed.

The next generation chip from AMD is the K6 which actually introduced Intel's MMX technology before Intel (under the various agreements that had previously been reached between the two companies). The K6 fits into Intel's Socket 7. The logic core of K6 was actually developed by NexGen (AMD acquired NexGen). The K6 contains 2 six-stage pipelines, both of which support branch prediction and speculative execution, which are fed by a group of four instruction decoderswhich again translate Intel CISC instructions into RISC instructions to match the chips core logic. Although the K6 cannot process 32-bit instructions quite as quickly as the Pentium Pro it does not suffer the slowdown, if suffers none of that chip's slowdown when processing in 16-bit mode. The K6 quadruples the cache size of the Pentium going to a full 32 KB for both the I and D cache. The D-cache is a dual-ported, set associative, write-back design which allows it to load and store data simultaneously on a single clock cycle.

Introduced in 1998, the K6-2 is an enhanced version of the K6 which primarily supports an expanded instruction set designed to speed up the execution of three-dimensional graphics routines. AMD called this extended set of graphics instructions 3D Now! The K6-2 also supports the full MMX instruction set. The K6-2 uses AMD P-rating system, which specifies not the actual operating speed of the chip but the speed of a Pentium chip that would deliver the same performance. The actual clock speed of a K6-2 is substantially lower that it's P-rating. (Given the form "rated clock speed in MHz: actual clock speed in MHz", some typical P-ratings are: 300:90, 333:100, 350:117.)

The AMD K6-3 (code named Sharptooth) was introduced on February 22, 1999 extends the K6 architecture line primarily through the improvements in semiconductor technology. The most significant changes are a Tri-Level Cache consisting of a 64 KB L1 cache, a 256 KB L2 cache integrated into the chip silicon, and integral support for up to a 1 MB external L3 cache. Both L1 and L2 cache operate at the full speed of the core logic, while the optional L3 cache couples through a 100 MHz front-side bus. The caches feed the K6-3's seven state pipelines (2 of them). AMD states that performance is equivalent to a Pentium III rated one speed higher, thus an AMD K6-3 running at 400 MHz is equivalent to a Pentium III running at 450 MHz. The large on chip caches require 21.3 x 106 transistors on the chip and AMD uses standard 0.25 micron design rules. Both 400 MHz and 450 MHz options have been offered.

AMD announced its first seventh generation microprocessor in October 1998, named the K7. Based upon a new core logic, the chip promises a quantum boost in performance based upon a nine instruction superscalar design. Meaning that when operating in optimal conditions the chip can simultaneously process nine instructions. The nine instructions are divided into three classes. The chip contains three parallel decoders which recognize the standard x86 instruction set. These three feed superscalar out-of-order integer pipelines and three superscalar out-of-order multimedia pipelines (essentially FPUs which recognize MMX and 3D-Now! instruction sets). The L1 cache is 128 KB (split 64/64) through a dedicated 64-bit back-side bus. L2 cache is supported in the range from 512 KB up to 8 MB. The front side bus can operate at speeds up to 200 MHz through the Alpha EV6 bus slot. Initial K7s used 0.25 micron technology and ran at 500 MHz, subsequent production shifted to 0.18 micron technology in later chip steps to increase to between 700 and 800 MHz. Current production puts K7 processor speeds over 1 GHz as of late summer 2000.

AMD’s response to IA-64, is the Sledgehammer processor which will be produced initially only at their new fabrication plant in Dresden, Germany, called FAB30.

Cyrix Corporation
Cyrix was founded with the intention of developing compatible chips (clones). It entered the market with several series of math co-processors compatible with Intel's 386 line. When Intel shifted to integral floating-point units, Cyrix shifted to designing Intel clones using its own core logic. Cyrix was a design and marketing company and did not have its own fabrication facilities and contracted primarily with IBM and Texas Instruments to manufacture chips to its specifications. In November 1977, the company was acquired by National Semiconductor as a wholly owned subsidiary.

The Cyrix flagship processor is the M II. This chip recognizes all of Intel's MMX commands (however, it uses Cyrix's own version of these based upon public disclosures that Intel has made). The "MMX" pipe is 10 stages long and capable of handling only one such instruction at a time.

The Jalapeno was announced in late 1998 by Cyrix which adds 3D graphics, anew floating point unit. This chip is being manufactured for Cyrix by their parent company National Semiconductor Facilities.

IDT/Centaur
Centaur Technology was founded in 1995 by IBM fellow Glenn Henry in Austin, Texas and introduced its first Intel compatible microprocessor the WinChip C6 in May 1997. Centaur is now a wholly owned subsidiary of Integrated Device Technology (IDT) of Santa Clara, California.

Appendix G: Pentium II Logic Level Diagram

 TO RAM

[image: image3.png])

INSTRUCTION 1 INSTRUCTION 2 INSTRUCTION 3 |TEMPLATE
INSTRUCTION 1 INSTRUCTION 2 INSTRUCTION 3 | TEMPLATE
INSTRUCTION 1 INSTRUCTION 2 INSTRUCTION 3 | TEMPLATE]|

R1

#

PREDICATE
REGISTER

Instructions
can be
chained
together

[image: image4.png]

[image: image5.bmp][image: image6.bmp]
� EMBED PBrush ���

Head

L2

Cache

512 K

Tail

x3

BIU

Buffer

BTB

Fetch and Decode Unit

16 K L1 I-cache

16 K L1 D-cache

Store

Buffer

 Dispatch		 Execute

		and

ALU

ALU

RU

JEU

MMX

FLU

� EMBED PBrush ���

36
CGS 3269 – CPUs and Microprocessors -52

_1030564727

_1031683549

_1030482801

