Before examining CISC and RISC architectures in detail we’ll first examine the details of how Pentium II and III processors work and then look at some of the techniques they utilize in isolation.

How A Pentium II Microprocessor Works

In order to follow the next twelve numbered paragraphs better, look at the picture of the Pentium II microprocessor in Appendix G.  The Pentium III processor operates in essentially the same fashion, the primary difference is the addition of a second FPU which is dedicated to the MMX commands and Streaming I/O.

1. The Pentium II microprocessor contains approximately 7.5 x 106  transistors in the CPU and approximately 15 x 106 transistors in the separate L2 cache.  This L2 cache contains 512 KB of storage built from off the shelf components.  The L2 cache is not part of the CPU but is built onto the same circuit board with the CPU.  This circuit board (called a Multi-Chip Module or MCM) then plugs directly into the motherboard of the computer.  While this design is cheaper to manufacture, the trade-off is that data flows between the L2 cache and the CPU at only 1/2 the speed of the CPU.  Thus if the CPU is clocked at 400 MHz, data travels to and from the L2 cache to the CPU at only 200 MHz.  This speed disadvantage is somewhat compensated for by doubling the L1 cache from 8K to 16K in each of the I-cache and D-cache.  This larger cache cuts roughly in half the time it takes to access memory, and provides faster access to the most recently used data and instructions

2. Since the CPU is limited to moving data in and out of the CPU at the speed of the main data bus (the front side bus in Intel nomenclature) the Pentium II extends the design philosophy begun with the Pentium Pro in that the L1 and L2 caches are designed to alleviate the effects of the bus bottleneck by minimizing the number of instances in which a clock cycle passes without the processor be able to complete an operation (blocked by the slowness of the bus).  The Pentium II extends this philosophy primarily by doubling the size of the L1 cache.

3. Information enters the CPU through the Bus Interface Unit (BIU).  The BIU duplicates the information sending one copy to the pair of L1 caches and one copy to the L2 cache.  If the incoming data is an instruction it is sent to the I-cache and if it is data for an instruction it is sent to the D-cache.

4. While the Fetch/Decode Unit is pulling instructions from the I-cache another component called the Branch Target Buffer (BTB)  determines if a particular instruction has been used before by comparing the incoming code with a record maintained in the separate look-aside buffer.  The BTB is looking in particular for instructions that involve branching (where the program being executed can take different possible paths).  If the BTB finds a branch instruction, it predicts which path the program will take based upon what the program has done at similar branches.  Intel's branch predictor units maintain a successful prediction rate of better than 90%.

5. The fetch portion of the Fetch/Decode Unit continues to pull instructions (16 bits at a time) from the cache in the order predicted by the BTB.  Then 3 decoders working in parallel break up the more complex instructions into uops (micro-operations) that the Dispatch/Execution Unit can process faster than the more complex instruction resident in the I-cache.  Note that the three decoders are not identical units - two are called restricted decoders and can only decode CISC instructions that each translate into a single uop, the other unit is called a general decoder (or complex decoder) and can handle CISC instructions that translate into four or fewer uops.  All CISC instructions which reference memory must be decoded by the general decoder.  If the CISC instruction involves more than four uops then it is sent to a special microcode instruction sequencer (MIS unit) which is not shown on our diagram.  Programs that make many memory references tend to frustrate the mulit-part decoder scheme of the Pentium II processor.  Operating at maximum speed with code optimized for them, the three decoders can generate 6 uops/clock cycle (one from each restricted decoder and four from the general decoder with an average for all code of about three uops/clock cycle).  All uops in this architecture are 118 bits long.

6. The decode unit sends all uops to the ReOrder Buffer (ROB) (also called the Instruction Pool).  This is a circular buffer, with a head and a tail, that contains the uops in the order in which the BTB predicted that they would be needed.  The ROB can store up to 40 entires each 254 bits long.  Each entry in the ROB contains the 118 bit uop plus two operands, the result and processor information that the uop might affect (status bits).  The ROB can prepare up to three uops/clock cycle for processing.  All register renaming is handled by the ROB.  There are 40 such registers in the Pentium II (not shown on the diagram).

7. As the decode unit passes uops to the ROB, it also sends them to a special unit called the Reservation Station (RS) (not shown on the diagram but think of it as inside the fetch/decode unit).  The RS serves two purposes: (1) it is the conduit that passes uops to a suitable execution unit as one becomes available and (2) it acts as another buffer storing up to 20 uops and their data.  This buffering effect prevents slowdowns in the decoders from starving the processors and also prevents the decoders from stalling when the processors are fully engaged.  The RS connects five ports linking to six execution stations that actually carry out the manipulations.   

8. The Dispatch/Execute Unit checks each uop in the ROB to see if it has all of the information necessary to process that uop.  If a uop still needs data from memory (which hasn't arrived yet), the execute unit skips that uop, and the processor looks for the missing information first in the L1 D-cache.  If the data isn't there it tries the L2 cache (recall that the L2 cache is 2-4 times faster than going to RAM for the information).

9. Instead of remaining idle while missing information for a uops is loaded, the execute unit continues inspecting each uop in the ROB.  When it finds a uop that has all of the information needed to process it, the unit executes it (in either one of the two ALUs, the MMX unit, or the FPU, and stores the results in the uop itself, marks the code as completed, and moves on to the next uop in the ROB.  This is called speculative execution because the order in which the uops appear in the ROB is dependent upon the prediction made by the BTB.  When the execution unit reaches the tail of the buffer, it starts at the head again, rechecking all of the uops to see if any has received the data it needs to be executed.

10. When a uop that has been delayed finally receives its data and is processed, the execute unit compares the results with those predicted by the BTB.  If the BTB has failed to correctly predict the proper execution order, a component called the Jump Execution Unit (JEU) moves the tail marker from the last uop in the ROB to the uop that was predicted incorrectly.  This signals that all uops behind it in the ROB are invalid and should be ignored and may be overwritten by new uops.  The BTB is told that its correction was incorrect, and that information becomes part of its future predictions (in order to enhance the probability that the next prediction will be correct).

11. Meanwhile, the ROB is also being inspected by the Retirement Unit (RU).  The RU first checks to see if the uop at the head of the ROB has been executed.  If it hasn't the RU keeps checking until it has been executed.  Once the uop at the head of the ROB has been executed the RU then checks the second and third uop in the ROB and if they have all been executed - it simultaneously sends all three results to the store buffer.  (Three is the maximum number of uop results that can be sent to the store buffer simultaneously.)  

12. While in the store buffer the results are checked one more time before they are sent to the L2 cache to await their trip to RAM.

Pipelining
In older microprocessor designs, the processor chip worked single-mindedly.  It read an instruction from memory, carried it out step-by-step and then advanced to the next instruction.  Each step required at least one clock cycle, so that execution of the entire instruction would take many clock cycles in total.  Pipelining allows for many instructions to be “executed” in one clock cycle.  In the paragraph and example below, we’ll illustrate how pipelining works.

Pipelining is a technique for decomposing a sequential process into a series of subprocesses, with each subprocess being executed in a special dedicated segment that operates concurrently with all other segments.  A pipeline can be visualized as a collection of processing segments through which binary information flows.  Each segment performs partial processing dictated by the fashion in which the original process was partitioned.  The results (output) produced by one segment are passed as input to the following segment in the pipeline.  The final result is produced by the last segment of the pipeline.  The easiest way to view a pipeline structure is to think of each segment consisting of an input register followed by a combinational logic circuit which performs a specific subprocess, the results of which are passed to the input register of the following segment.  A clock line is connected to all registers and is pulsed after enough time has elapsed to perform all segment operations.  The following example will clarify how the pipeline operates.

Example
Suppose that we want to perform a combined multiply and add operation with a stream of numbers such as:  A[ i ] x B[ i ] + C[ i ],  where i = 1,2,…,7.  Each suboperation can be implemented as a segment within a pipeline.  Each segment has one or two registers as well as a combinational logic circuit devoted to performing a specific function.  The figure below illustrates the basic set-up that will be required for the pipeline.  Registers R1 through R5 receive new data on every clock pulse.  The multiplier and the adder are combinational circuits.  The suboperations performed in each segment of the pipeline are:

Segment 1: R1 ( A[ i ],  R2 ( B[ i ]

Input A[ i ] and B[ i ]


Segment 2: R3 ( R1 x R2,  R4 ( C[ i ]

Multiply and input C[ i ]


Segment 3: R5 ( R3 + R4



Add C[ i ] to product
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Figure showing example 3-stage pipeline

	Clock Pulse Number
	Segment #1
	Segment #2
	Segment #3

	
	R1
	R2
	R3
	R4
	R5

	1
	A[1]
	B[1]
	-
	-
	-

	2
	A[2]
	B[2]
	A[1] x B[1]
	C1
	-

	3
	A[3]
	B[3]
	A[2] x B[2]
	C2
	A[1] x B[1] + C[1]

	4
	A[4]
	B[4]
	A[3] x B[3]
	C3
	A[2] x B[2] + C[2]

	5
	A[5]
	B[5]
	A[4] x B[4]
	C4
	A[3] x B[3] + C[3]

	6
	A[6]
	B[6]
	A[5] x B[5]
	C5
	A[4] x B[4] + C[4]

	7
	A[7]
	B[7]
	A[6] x B[6]
	C6
	A[5] x B[5] + C[5]

	8
	-
	-
	A[7] x B[7]
	C[7]
	A[6] x B[6] + C[6]

	9
	- 
	-
	-
	-
	A[7] x B[7] + C[7]


Table 1 – Contents of Pipeline Registers for 3-stage pipeline

Since the five registers are loaded with new data on every clock pulse, the effect of each clock pulse is shown in Table 1.  The first clock pulse transfers the operands A[1] and B[1] into R1 and R2 (segment 1).  The second clock pulse transfers the product A[1] x B[1] into R3 and C[1] into R4 (segment 2), and A[2] and B[2] into R1 and R2 (segment 1).  The third clock pulse operates on all three segments of the pipeline simultaneously.  This clock pulse transfers the sum of R3 and R4 into R5 (this value represents A[1] x B[1] + C[1]) (segment 3), transfers the produce A[2] x B[2] into R3 and C[2] into R4 (segment 2), and finally transfers A[3] and B[3] into R1 and R2 (segment 1).  At this point the pipeline is filled and the first output from the pipeline has been produced.  From this point forward, a result will be produced by the pipeline with each clock pulse.  As long as new data continues to flow into the pipe on each clock pulse the pipe will remain full.  When no more input data is available, the clock must continue to pulse until the last output has emerged from the pipeline.  This may result in an empty pipeline, however, it would be very common for the pipeline to already be accepting input from another stream and thus continue to produce output, albeit, for another instruction.  Synchronization of the output streams will be left to the control unit logic. 

The Pentium II and III microprocessors use 12 stage pipelines in the integer ALUs.

In order to achieve maximum effect from pipelining techniques, microprocessor designers strive to make all of the instructions in the microprocessor's instruction set execute in the same number of clock cycles.  This prevents any one segment from becoming a bottleneck to the overall speed of the pipeline.  Similarly, the length of the pipe should be kept small to prevent long delay times to fill and flush the pipeline.  The 12 stage pipelined ALUs of the Pentium II and III are actually a liability to their performance (see Appendix E for a discussion of the inherent problems with the IA-32 ISA compared with the IA-64 ISA).

Branch Prediction
Most current microprocessor architectures are heavily pipelined.  Pipelining works best on linear code, so that the fetch unit can simply read consecutive addresses from memory (cache) and send them off to the decode unit in advance of their being needed by the execution units.  The only problem with this model is that it is not the slightest bit realistic.  Programs are not linear code sequences.  They are full of branch instructions.  Pipelining fails to work efficiently if the program steps require branching operations.  For example the pipeline can be loaded up with instructions from one program branch before it has determined that the other branch is the one which will actually be executed - in this case the pipeline contents must be dumped and reloaded with the instructions from the correct branch.  As an example, consider the following program fragment:


if (i == 0)



CMP  i, 0

:compare i to 0


     k = 1;



BNE   else

:branch to else if not equal


else



then:
MOV  k, 1

:move 1 to k


     k = 2;



BR   next

:unconditional branch






else:
MOV  k,2

:move 2 to k






next:

code fragment


same code fragment in generic assembly language
Notice in the code fragment above (assembly language version) that two of the five instructions are branches.  Furthermore, one of the branches (BNE) is a conditional branch, which means that the branch is only taken if some condition is met (in this case, the two operands in the previous CMP instruction are not equal).

The longest linear code sequence in this example is two instructions.  As a consequence, fetching instructions at a high rate to feed the pipeline is very difficult to do.  The reason this is a problem lies in the very nature of pipelining.  In a typical instruction pipeline, the fetch unit is typically the first segment of the pipe followed by the decode unit as the second segment.  This means that the fetch unit has to decide where to fetch the next instruction from before it even knows what kind of instruction it just fetched.  Only one cycle later can it learn that it just picked up an unconditional branch instruction, only by then it has already started to fetch the instruction which follows the unconditional branch instruction.  There are several techniques that have been employed to get around this problem, including simply executing the instruction that immediately follows an unconditional branch, even though logically it should not be executed.  This is called a delay slot.  Optimizing compilers will sometimes attempt to find a useful instruction to put into this slot, but very often there will not be one, so a simple NOP (no-operation) instruction is inserted into the delay slot.  While unconditional branches cause headaches, they are nothing compared to the problems that conditional branch instructions cause, since now the fetch unit does not even know where to fetch from until much later in the pipeline.  Early pipelined machines just stalled until it was known whether or not the branch would actually be taken or not.  Stalling for three or four cycles on every conditional branch, especially if 20% of the instructions are conditional branches, deteriorates performance quite rapidly.  Modern processors take another approach, they predict whether or not the conditional branch will be taken or not.  It would be nice to stick a crystal ball into a free PCI slot to help out with the prediction, but so far this has not proven very effective!   One simple predictive technique that is commonly applied is to assume that all backward conditional branches will be taken and that all forward conditional branches will not be taken.  This works pretty well because backward branches are typically found at the end of a loop, most loops are executed multiple times, so guessing that a branch will take you back to the top of the loop is a pretty reasonable bet.  The second part of this technique isn’t quite as good, since it is very common to find forward branches occurring when an error is detected in the software (calling an error handler).  Errors are supposed to be rare so most of the branches associated with them should not be taken.  The problems occur when there are forward branches that are not related to errors, this model will not give a very good prediction rate for such branches.

If a branch is correctly predicted, there isn’t anything special to do, execution continues at the new target address without interruption.  The trouble comes when the prediction is incorrect.  Figuring out where to go correctly and how to get there is the easy part.  The hard part is undoing the instructions that have already been executed and shouldn’t have been.  There are two basic ways of handling this problem.  The first way is to allow instructions fetched after a predicted conditional branch to execute until they attempt to change the machine’s state (i.e., attempt to store something in a register).  Instead of overwriting the register, the value is placed into a “secret” scratch register and is only copied into the real register after it is known that the branch prediction was correct.  The second method is to record the value of any register about to be overwritten (put this value into a “secret” scratch register), so that the machine can be rolled back to the state it had at the time the branch was mispredicted.  Both of these solutions are complex and require heavy duty bookkeeping to get them right.  If a second conditional branch is encountered before it is known if the first one was predicted correctly, things can get really messy.

Clearly, having the branch predictions be as accurate as possible is extremely important in allowing the CPU to proceed at full speed.  As a consequence, a great deal of current research is devoted to improving branch prediction algorithms.  Intel’s branch prediction units have a better than 90% accuracy rate.  Due to the very long pipelines in the Pentium ALUs an accuracy of 90% or better is required to prevent overall performance from degrading too far.

Superscalar Architectures
Program steps are usually sequential in nature for most common imperative programming languages - however, execution of these instructions does not have to be carried out in the same sequential order.  For example, if you wish to compare the average speed of two cars over a certain distance and time, you need to calculate the average speed for both of them and then make your comparison.  Which average speed you calculate first makes no difference.  If you had two brains, you could calculate the two average speeds simultaneously.  Superscalar architectures do just that - they provide two or more execution paths for instructions to be processed simultaneously. The world's first superscalar computer design was the Control Data Corporation (CDC 6600) mainframe in 1964.  The CDC 6600 was designed for intense scientific calculations and contained ten functional units.  Every 100 nsec an instruction was fetched and passed to one of the functional units for parallel execution while the CPU went off to fetch the next instruction.   A typical dual pipeline CPU configuration is shown in [image: image1.png]Ali] BIi] Clil
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the figure below.  

In this model a single instruction fetch unit fetches pairs of instructions together and puts each one into its own pipeline, complete with its own ALU for parallel operation.  To be able to run in parallel, the two instructions must not conflict over resource usage (e.g., registers), and neither must depend on the result of the other (no dependencies).  As with a single pipeline, either the compiler must guarantee this in advance of execution, or conflicts must be detected and resolved in hardware.  Pipelines such as this are common on RISC processors but did not appear on Intel processors until the 486 which had one pipeline.  The Pentium architecture has two five-stage pipelines similar to this model (one is called the u-pipeline, the other the v-pipeline.  Rather complex rules determine whether a pair of instructions were compatible for parallel execution.  Pentium-specific compilers producing compatible pairs were capable of producing faster running code than older compilers.  Typically, a Pentium running integer-based code optimized for it was twice as fast as a 486 running at the same clock speed.  This gain was entirely attributable to the second pipeline.  You might think that if two pipelines are twice as good as a single pipeline then four pipelines would be twice as good as two pipelines.  Unfortunately, the progression is sub-linear, since too much hardware must be duplicated and control becomes too complex.  Indeed the Pentium II and III processors  (as well as most high-end processors) use a different approach which reverts to a single pipeline but with multiple functional units within the pipeline.  This is shown in the next figure.

[image: image2.png]sS4

ALU
ALU
St s2 S3 S5
Instruction Instruction Operand Write
fetch > decode fetch LOAD back
unit unit unit unit
STORE
Floating

point





Implicit in the idea of a superscalar processor is that the S3 stage (see figure above) can issue instructions considerably faster than the S4 stage is able to execute them.  For example, if the S3 stage issued an instruction every 10 nsec and all the functional units could do their work within 10 nsec, no more than one would ever be busy at once, which would negate the whole concept.  In reality, most of the functional units of stage S4 take appreciably longer than 1 clock cycle (10 nsec) to execute, certainly the ones that access memory or floating-point calculations.  By placing more than one functional unit in the S4 stage, they can theoretically all be busy at one time.   The Pentium II, for example, has two integer ALUs and a FPU in stage 4.  The Pentium III has two integer ALUs and two FPUs in the S4 stage.

Out of Order Execution
It is a very difficult problem to dynamically ensure that a program is divided up in such a way that the pipelines of a superscalar processor share equal amounts of work.  Typically one pipeline will still be working while another has finished and stands idle.  The chip logic can initiate another instruction for the idle pipeline - if another instruction is ready.  However, if the next instruction depends on the results of the instruction before it (a dependency) and that happens to be the one still stuck in another pipeline - then the free pipeline stalls and potential processor power is wasted as the idle pipeline is free but can do no work.

Obviously, the simplest scenario is to execute every instruction in the order in which it is fetched (sequentially based upon the program code – assuming that branch prediction is never wrong).  However, this in-order execution does not typically give optimal performance due to dependencies that exist between various instructions.  If an instruction needs a value that is produced by a preceding instruction, then the second instruction cannot begin executing until the first one has produced the required result.  This is a RAW (read-after-write) dependency.  In order to boost the performance of the processor, many modern processors allow dependent instructions to be skipped over, to get to future instructions that are not dependent.  However, the internal instruction scheduling algorithm must guarantee that the end result is exactly the same as would have resulted if the program had been executed in the exact order it was written.

Since the microprocessor is no longer executing the code in the order it was written - anomalies may result and therefore the results of out of order execution are not written to the internal registers as soon as they are available.  Instead these results are held in an internal buffer and when the other instructions (the ones prior to the out of order ones) finish - the microprocessor put the results into the proper order and checks for any anomalies that might have resulted; only then are the results posted to the registers.

Register Renaming
Out of order execution has the potential for executing two different instructions, essentially simultaneously, that refer to the same register.  Execution of the program in the normal order would not encounter this problem as first one instruction would execute and then the other.  The conflict over register access and the values that would result would force the superscalar architecture to resort to sequential processing of such instructions - slowing it dramatically and losing the advantage of the superscalar design.  To avoid this problem advanced microprocessors use a technique called register renaming.  Instead of a small number of registers with fixed names - a large bank of dynamically named registers is used.  These dynamically allocated and named registers are not visible to programmers and are sometimes called secret registers.  The logic of the chip converts a register reference made by an instruction into a reference to one of the dynamically named registers.  The chip must then remember which register is used for which instruction as the program executes so that the proper results are loaded when called.

RISC - Reduced Instruction Set Computer
 Developed by John Cocke at IBM in 1974.  Cocke did research on mainframe computers (there weren't any PC then remember!) and discovered the fact that in a computer with a set of 200 instructions, roughly 2/3 of the processing involved as few as 10 of the instructions.  Cocke therefore designed a computer than ran very fast but consisted of only a very few instructions, the RISC computer.  Cocke's research also showed cases where a few simple instructions could perform a complex task faster than a single complex instruction.  This is commonly known as the 80/20 rule:  About 20% of the computer's instructions do about 80% of the work.  

The primary objective of the RISC architecture is to optimize the computer's performance for those 20% of the instructions by speeding up their execution as much as possible.  The remaining 80% of the instructions can be duplicated, where necessary, by combinations of the quick 20%.  Analysis and practical experience since it's inception has shown that the 20% can be made so much faster that the overhead required to emulate the remaining 80% was no handicap at all.

Important characteristics of RISC
1. Single-cycle or better execution of instructions.  Most instructions on a RISC computer can be carried out in a single clock cycle, if not faster through the use of pipelining techniques.  The chip doesn't processing a single instruction in a fraction of a clock cycle, but rather processes several instructions simultaneously as they move down the pipeline.  For example, a chip may work on 4 instructions simultaneously, each of which requires 3 clock cycles to execute.  The net result is that the chip requires 3/4 clock cycle per instruction.

2. Uniformity of Instructions.  The RISC pipeline operates best if all of the instructions are of the same length (number of bits), require the same syntax, and execute in the same number of clock cycles.  Most RISC computers are exclusively 32-bit machines.  In contrast the CISC command set used by Intel microprocessors use 8, 16 or 32 bit instructions.

3. Lack of Microcode.  RISC computers either entirely lack microcode or have very little of it, relying instead on hardwired logic.  Operations handled by microcode in CISC computers require sentences of simple RISC instructions.  Note that if these complex operations are performed repeatedly, the series of RISC instructions will be loaded into the high-speed cache and then act like microcode that is automatically customized for the running of that program.

4. Load-store design. Accessing memory during the execution of an instruction often causes a delay because the RAM cannot be accessed as quickly as the microprocessor can run.  Therefore, most RISC machines do not have immediate instructions (those that work on data in memory rather than in registers) and they attempt to minimize the number of instructions that affect memory.  Data must be explicitly loaded into a register before it can be accessed by the program.  The optimizing compiler can then organize the sequence of instructions so that the delay on the pipeline can be minimized.

5. The hard work is in the software.  The RISC design shifts most of the work in achieving top performance to the software.  The optimizing compiler must examine and modify the code (rearrange the order of instruction execution) in order to keep the pipeline running optimally.

6. Design simplicity.  Simplicity is the overall design criteria for RISC machines. For example the Intel 80486 microprocessor contains 1(106  transistors, the RISC-based MIPS M/2000 contains only about 120,000 transistors, yet the two are comparable in performance.

To better understand how a RISC processor works see Appendix B.

Micro-Ops and CISC/RISC Computers
Many microprocessors that look like CISC chips and execute the classic Intel CISC instruction set are actually RISC chips inside.  Initially, chip makers seeking to clone Intel's microprocessors were the first to use such designs, but Intel adopted the same technique beginning with the Pentium Pro.

The basic technique involves converting the classic Intel instructions into RISC-like instructions to be processed by the chip's internal circuitry.  Intel calls the internal RISC-like instructions micro-ops (this is commonly abbreviated (ops or simply uops) [Also note that NexGen, now a part of AMD used the term RISC86 instructions and AMD itself used the term R-ops or ROP's]  

Uops side-step the primary shortcomings of the Intel instruction set by encoding all of the instructions more uniformly - converting all instructions to the same length for processing, and eliminating arithmetic operations that directly change memory by requiring the loading of memory data into registers before processing.

This translation to RISC-like instructions allows the microprocessor to function internally, like a RISC machine.  The code conversion occurs in hardware and is completely invisible to the applications.

Very Long Instruction Word (VLIW)
A counterpart to RISC technology is that of Very Long Instruction Word (VLIW) technology.  While it may seem to be the opposite of RISC techniques, VLIW is actually a refinement of RISC designed to take advantage of superscalar architectures.  Each very long instruction is made up from several RISC instructions.  In a typical implementation, eight 32-bit RISC instructions combine to make one VLIW.  

Ordinarily, combining RISC instructions would not contribute greatly to the overall speed.  As with RISC technology- the advantage is mostly in the software. The compiler that produces the object code must chose which instructions to combine into a VLIW carefully so that they all execute at the same time (or as close as possible) in parallel processing units inside the superscalar microprocessor.  Thus the VLIW system takes advantage of the preprocessing done in the optimizing compiler to make the final code and microprocessor more efficient.

VLIW technology also takes advantage of the wider bus connections on the latest generation microprocessors.  Existing chips link their support circuitry with 64-bit buses and many have 128-bit internal buses.  The 256-bit VLIWs push a little bit further and allow the microprocessor to load several cycles of work in a single memory cycle.

There are currently no implementations of VLIW systems although there have been implementations in the past (Trace 200 family of systems Trace 7/200, 14/200 and 28/200 capable of executing 7, 14, or 28 parallel operations respectively)

Single Instruction - Multiple Data (SIMD)
An analogy will help to identify what SIMD is all about.  Consider an Army drill sergeant facing an entire platoon.   If the sergeant wants the soldiers to turn around, he could give the same instruction, "About face", to each soldier one at a time.  But drill sergeants are naturally SIMD oriented devices.  The sergeant doesn't give the order to each soldier individually - he gives the same command to every soldier in the platoon (at the same time) and each of the soldiers execute the command simultaneously.  Thus the sergeant is the SI (single instruction) and the soldiers are the MD (multiple data).

Intel has adapted SIMD technology into both the MMX units of the Pentium MMX, Pro, P2, and P3 as well as in the Streaming SIMD Extensions of the P3 to enhance their 3D processing power.  As its name implies, SIMD allows a single microprocessor instruction to operate across several bytes (or words, or even larger blocks of data).  In the MMX scheme of things, the SIMD instructions are matched to the 64-bit data buses.  Regardless of the original format of the data, whether it be a byte, a word, etc. - it is packed into the 64-bit package that is loaded into a 64-bit register inside the MMX unit.  One MMX instruction (recall that there are 57 different instructions in the MMX unit) then manipulates the entire 64-bit block.

Streaming SIMD Extensions (SSE)
The P3 microprocessor has been augmented with 70 new instructions (formerly known as Katmai New Instructions or KNI to go along with the original code name for the P3 which was Katmai) which allow for elaborate three-dimensional processing functions to be included in a single command.  These 70 commands also are capable of streaming audio and video from the Internet as well as speech recognition capabilities.  The SSE extensions to the P3 push the number of transistors in this microprocessor to about 9.5 x 106 !
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 Operating Modes
Overview:  As Intel developed the various microprocessors in the x86 line one underlying factor in the development of each new processor was it's compatibility with it's predecessors.  For example, the instruction set from one generation was carried over the next.  Another example is that of the registers wherein a newer generation processor can use half of a 32-bit register as if it were a 16-bit register.  It is this desire to maintain the backward compatibility that has led to the rather odd structure and operation of many modern microprocessors.  For example, Intel's use of segmented memory for its first generation microprocessors was to maintain this backward compatibility.  The used of segmented memory was to allow the 1 MB address range to look like sixteen 64 KB found on the earlier generation chips.  Unfortunately, addressing became convoluted and program writing was complicated since the chips treated memory as sixteen separate blocks instead of a single broad range of addresses.  

With subsequent generations, Intel's backward compatibility and memory problems was to create different operating modes.  As a result, modern Intel microprocessors have three primary operating modes: real mode, protected mode, and virtual 8086 mode.  All of these operating modes have been available in every Intel microprocessor since the introduction of the 80306 in 1987.  In the next several paragraphs we'll look at how each of these modes operates.

Real Mode:  This is the basic operating mode of the Intel microprocessors (the only mode available on the first generation of Intel processors.  Even in the most advanced Intel chip currently available for PCs, the Pentium III Xeon, real mode still emulates the 8086 processor and all of its limitations.  Real mode derives its name from its exact correspondence between physical memory and the logical addresses used by the processor to address it.  The logical addresses specified in programs that operate in real mode indicate the actual physical addresses in the memory determined by the design of the computer hardware.  In real mode the processor can directly address up to 1 MB of memory, the limit which is imposed by the 20-bit memory addresses generated by the first generation processors. (note: 220 = 1048576 = 1000 KB = 1 MB.)  To effect backward compatibility, Intel segmented the memory accessed in real mode.  Instead of a single wide range of addresses, the processor locates memory in 64 KB segments.  To specify a location, the processor uses the segment as an offset and the location in the memory as a base address.  (Note:  more current versions of Intel's microprocessors extend the range of real mode addressing using a quirk of the architecture.  In addition to the 20-bit address values there is also a carry bit which can be used to indicate another memory segment for a total of 1088 KB of real-mode memory.  Transitional operating systems between DOS and modern versions of Windows exploited this real-mode feature to create the High-memory area.

All Intel microprocessors since the 8086 boot up in real-mode.  Software (typically, the operating system) then switches the processor to a more advanced mode to take advantage of features such as greater memory address-ability and memory protection.

Protected Mode:  Intel introduced the Protected Virtual Address Mode in 1982 to give the 80286 processor the ability to reach all 16 MB of its addressable range.  This new mode is more commonly referred to simply as the protected mode.  As the name implies, protected mode operation allows the processors to protect ranges of memory so that when multiple tasks are running simultaneously (think Windows here), they do not interfere with each other's memory.  When the processor is running in protected mode additional instructions are available, most of which are aimed at multitasking.  In protected mode, software can be assigned one of four priority levels which prevent applications of lower priority accessing the memory assigned to an application of higher priority.  For example, the operating system would normally be assigned the highest priority in order to prevent the crash of a program with lower priority from affecting it.  While operating in protected mode, the processor first checks all memory references against the protection levels - if the access is not allowed, the processor will not carry out the instruction and will signal an exception (causing an interrupt in the program making the out of range memory request).  

In protected mode the memory remains segmented but the segments are now used to manage the memory and tasks rather than acting as a constraint on the addressing possibilities.  Segments can be any size, each defined by a special descriptor block that tracks how much memory is allocated to the segment, where in the overall address space the segment resides, and what level of protection has been assigned to the segment (actually to the application resident in the segment).

Protected mode also supports a flat memory model, which treats the entire memory as a single, contiguous expanse of addressable memory (helps support UNIX O/S).

Protected mode also supports demand paging.  Demand paging is basically a technique that allows an application (a program) that requires a lot of memory to run with a lesser amount of physical memory.  Demand paging works by slicing the memory into small sections called pages (Intel systems fix a page at 4 KB) which are managed individually.  Pages of code and data belonging to one application are swapped in an out of memory as it is needed (on demand by the application via the processor).  Protected mode imposes no addressing limits on the processor.

Virtual 8086 Mode:  To accommodate the old DOS operating system in the protected mode, Intel added the virtual 8086 mode to the 80386 processor and to all subsequent processors in the line (this mode is also commonly referred to as virtual x86 mode and virtual mode).  The name of this mode arises from the fact that in this mode the single processor's operation is divided into several virtual processors, each capable of running a separate DOS task as if it were a dedicated 8086 chip.  Each virtual processor running under virtual mode can access up to the full 1 MB addressing limit of real mode and can use the same instruction set and facilities as would be available with a dedicated 8086 chip.

Unlike real mode, virtual mode operates as part of protected mode and affords the same isolation between applications.  Thus, one or more protected mode applications can run at the same time as one or more virtual mode applications.  An operating system running under protected mode usually manages the applications which are running in virtual mode.  Virtual mode makes multitasking control software simple because all of the hard work is done in hardware.  Off the shelf DOS programs will work without modification in virtual mode using any Intel processor from the 80386 onward.

As the number of real-mode applications, such as those written for DOS, steadily decline, the importance of virtual mode will also decline.  However, it will probably remain a part of the Intel microprocessor family until Intel discards this architecture (which will probably happen with the IA-64 machines).

Microprocessor History and Competition
"Microprocessor power doubles every 18 months" states Moore's Law (named for longtime chairman of Intel, Gordon Moore).  Over the, thus far, roughly 20 year history of the PC the power increase factor is currently 4096 (comparing the 8088 and the P3).  The designs of the processors however, have far exceeded this factor in that the first microprocessor contained 2,300 transistors while the P3 contains over 9.5 x 106 transistors.  Improvements in semiconductor fabrication technology made the increasing complexity of the modern microprocessor both practical and affordable.  In the three decades since the first microprocessor was introduced, the linear dimensions of semiconductor circuits have decreased to 1/50 their original size.  This is the result of going from 10 micron design rules to the current limit of 0.18 micron design rules.  This means that microprocessor designers can now squeeze 2,500 transistors into the same space where originally only one fit.  This size reduction also facilitates higher speeds with today's current state of the art microprocessors boasting speeds nearly 10000 times faster than the first chip out of the Intel factory (1 GHz compared to the 108 KHz of the first chip).

Thanks to the unbelievable rise in popularity of the PC, Intel Corp. is now the largest manufacturer of microprocessors and the largest independent manufacturer of semiconductors in the world.  They are, however, not alone.  Today there are three major competitors which both clone Intel products as well as produce their own designs.  These three companies are AMD, Cyrix, and IDT.  A brief history and discussion of their current microprocessors appears in Appendix F.

The Future (at least some possible futures!)
In 1997 Gordon Moore made a revision to his widely known "Moore's Law" stating that the transistor miniaturization would hit a wall in about the year 2017.  The wall he is referring to is a literal one, namely the atoms stacked between adjacent traces in a microchip.

Traces are the microchip equivalent of the wires that carry electrical current in your home.  Narrow beams of light are used to draw the pattern of the traces on a disk of silicon coated with a photosensitive film.  A chemical bath dissolves the film where the light struck the disk and it is replaced with aluminum.  With current microchip technology the narrowest trace that can currently be made is about 0.10 microns, roughly the distance across several hundred atoms.  A micron is one millionth of a meter.  The Pentium III currently is using 0.18 micron traces and Intel has plans to begin using 0.13 micron traces by the year 2001.  (The Tiawanese Semiconductor Corporation announced recently that they will begin production using 0.13 micron technology in October 2000.)

Chip makers have experimented with X-rays to draw the traces instead of light beams since X-rays are much narrower than light beams.  As the traces grow smaller, the problems begin to increase as the physical limit is approached.  Gaps in the metal increase the electrical resistance, blocking the flow of electrons.  Copper, whose conductivity is greater than that of aluminum (and is therefore more efficient) is subject to corrosion and scratching.  As some point the distance between the traces becomes as important as the width of the traces themselves.  If the traces are too close together, the electromagnetic fields accompanying the flow of electrons begin to sap and distort the signals carried by adjacent traces.  IBM recently introduced silicon-on-insulator (SOI) technology that protects transistors from stray electromagnetic fields.  Even if you do work out all of the kinks (figuring out traces that will reliably carry the current and efficiently yet doesn't melt from its own heat), you will reach a point where the walls that separate the traces are only about 5 atoms across.  At that scale, the insulating walls tend to spring electrical leaks as electrons spill out of the sides of the traces on narrow turns (tunneling effect).  At this point you have gone just beyond the absolute physical limit to the number of transistors that will fit on a chip.  Such a chip will contain about 19 trillion transistors, roughly 20 times the number of neurons in the human brain.

These hard physical limits to the number of transistors that will be able to reside on a single chip have more or less dictated that tomorrow's super microprocessors will utilize parallel processing techniques.  Designer’s are already at work on microprocessor systems that will combine any where from two to eight processors (depending upon the processor) in parallel.  In parallel processing pieces of a calculation are fed to different processors at the same time which work on their piece independently of the others and their results are combined together at the end to produce the final result.  Parallel processing requires overhead that a single processor does not experience.  First the calculations must be broken up and distributed across the various processors (attempting to balance their loading) and the individual results must be combined in a smooth fashion with no serious delays caused by any single processor.  Microchips will only be able to go so far in this direction.

Of course, silicon is not the only answer.  Xerox's Palo Alto Research Center has envisioned a microchip built from diamonds (which complex, stable crystals) where their structure provides a theoretical basis for building the logical structures which make up transistors from just a few atoms.  Such a processor would contain more than one hundred billion bytes in the volume of about the size of a sugar cube.

Danish scientists at the Danish Institute of Technology have reported that using a tunneling-scanning microscope they have been able to remove, from a hydrogen surface layer on a silicon chip, a single hydrogen atom from the pair of hydrogen atoms attached to the one silicon atom.  This leaves the remaining hydrogen atom jumping back and forth between the two layers.  The possibility of storing information at the atomic level means that the ability to store the information which today is contained on 1 million CD-ROMs could be stored on a single CD-ROM using this technology.  Practical application of this technology appears to be about 2 decades away.

Last month a break-through was announced in the development of a transistor controlled by a single molecule of carbon-60 (known as a buckyball) sandwiched between gold electrodes.  The transistor was built at Lawrence Berkley National Laboratory.  This will eventually lead to the development of nano-circuits which will further reduce the size and increase the speed of computers built from these nano-scale devices.

At an even smaller level - the sub-atomic level, we have the quantum processor.  In the quantum world the normal rules of science begin to breakdown.  A subatomic particle can be thought of as existing in several different states simultaneously.  Only through the act of "measuring" the particle is it "forced" into a single state.  Researchers at NEC wanted to find out if quantum states, rather than voltage levels could be used to encode and process information.   The state of a quantum bit (or qubit) is determined only when it is observed.  Physically, the qubit exists in an ambiguous "superposition of states" so a string of processor operations has the potential to simultaneously represent all possible strings of bits.  Thus a large enough quantum computer could potentially hold all answers simultaneously.  For example, to factorize a 200-digit number would take about one trillion years on today's fastest microprocessor.  The same problem would require about an hour with a quantum processor.

What exactly the future holds for microprocessors is not clear; however, based on the past we will expect them to be smaller, faster, and more powerful than ever before. 

A brief overview of Streaming Audi and Video





While the Internet began as a text-only medium, it has quickly evolved into a multimedia  medium.  Compared to your CD-ROM and DVD players the Internet is slow.  The problem with audio, video, and graphics is that typically very large amounts of data are required in order to process the medium on your local system.  The basic problem with this is the bandwidth that is available via the Internet.  The bandwidth basically refers to how much data you can push across a network (or a bus, or any other data path that you can think of).  Basically, a wider bandwidth means that more information can flow across or around the network.  Compression techniques can be used to enhance the bandwidth since the files seem smaller (their compressed).  However, compression techniques that are suitable for your CD-ROM or DVD are not suitable for the slow Internet.  Thus content providers (who ever puts out the video or audio clip) typically provide less quality that what you would get from a similar CD-ROM.  This means that they might reduce the range of sound available (restrict the number of high and low pitches that you can hear) or reduce the number of colors  and frames for video.  Also typically, the size of the window is reduced and the length of the multimedia clip is shortened.    The first audio and video clips that were available on the Internet were short clips because your computer had to completely download the file to its hard drive before it could begin playing the file.  A newer technology called streaming extends the length of a multimedia clip from a few seconds to hours.  Streaming enables your computer to begin playing the file as soon as the first bytes begin arriving, instead of forcing it to wait until the entire file has been downloaded.  Streaming does not use the same file transmission protocol.  The protocol is the set of rules that two computers use to govern how they connect to one another, how they will break up the data into packets, and how they will synchronize sending them back and forth.  Most data (textual) uses the Transmission Control Protocol (TCP), however streaming uses the User Database Protocol (UDP).  The basic difference in the two protocols is in how they check for transmission errors.  For example, if you are downloading a game from the Internet and a passing electrical interference garbles one of the packets, then TCP suspends the download while it asks the sending computer to re-send the bad packet.  However, with video and audio, if you miss a frame or two or a work hear and there, the loss is not very crucial (you probably won't even notice it).  However, you would notice it if the protocol took the extra time needed to ask for and receive a retransmission.  Thus, UDP allows the connection to occasionally loose packets without a problem.
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