Types of Memory Errors

Unfortunately, no memory system is perfect.  Although misrepresentation of a single bit from millions of bits might not seem like much of a concern, it can lead to system crashes or alter the answer to an important calculation.  It is important at this point to make the distinction between a memory error and a transmission error.  When sending data over communication lines (note that this could be a local bus and thus the transmission is entirely inside your system) an error in the transmission of the data may occur which can be detected and/or corrected  or simply ignored.  The choice of which approach to use is in many ways application dependent.  For example, if you are listening to music on your system’s CD player with a 48x sampling rate – the odd bit error will simply be ignored.  On the other hand, if your application is to make sure that the space shuttle comes out of orbit so that it hits the center of the runway at the Cape, you would like to be sure that your data is accurate or you may be fishing it out of the adjacent swamp while you contemplate your job options!    Memory errors fall into two broad categories, soft errors and hard errors, we’ll examine each type separately.  

Soft Errors

Soft errors are unexpected or unwanted changes in the value of a bit (or bits) somewhere in the memory.  One bit may suddenly, randomly change state, or noise (electronic interference) may get stored as if it were valid data.  In either case, one or more bits become something other than what they are supposed to be, possibly changing an instruction in a program or a data value used by a program.  Soft errors result in changes in your data rather than changes in the hardware.  Through replacement or restoring the erroneous data value (or program code) the system will once again operate exactly as it should.  Typically, a system reset (reboot - a cold boot) will effect this restore.  Soft errors are why you apply the old rule of thumb - "save often".  Most soft errors result from problems within the memory chips themselves or in the overall circuitry of the system.  The mechanism behind these two different types of soft errors is completely different.

Chip-Level Errors:  The errors which occur inside the memory chips themselves are almost always a result of radioactive decay.  The culprit is the epoxy of the plastic chip package, which like most materials contains a few radioactive atoms.  One of these minutely radioactive atoms will spontaneously decay and produce an alpha particle.  Practically every material will contain a few radioactive atoms, not enough to make the material radioactive (the material is well below background levels), but they are there.  By definition, a radioactive particle will spontaneously decay at some time.  An alpha particle consists of a helium nucleus, two protons and two neutrons, having a small positive charge and a lot of kinetic energy.   If such a charged particle "hits" a memory cell in the chip, the charge and the energy of the particle will typically cause the cell to change state in a microscopic nuclear explosion.  The energy level of this nuclear explosion is too small to damage the silicon structure of the chip itself.  Whether a given memory cell will suffer this type of soft error is unpredictable,  just as predicting if or when a given radioactive atom will decay is impossible.  However, when you deal with enough atoms this unpredictability becomes a probability, and chip designers can predict that one of the memory cells in a chip will suffer such an error.  They just can't predict which one of the cells will be affected.  In the early days of PCs, radioactive decay was the most likely cause of soft errors in the computer.  Improvements in design and technology have made memory chips more reliable.  For example, any given bit in a 16 KB chip might suffer a decay-based soft error every billion or so hours of operation.  The likelihood that a given bit in a modern 16 MB chip will suffer an error is on the order of once in two trillion hours of operation.  This makes modern chips about 5000 times more reliable than those in the first generation PCs, and the contents of each cell in the memory is about five million times more reliable when you consider that the capacities have increased about 1000 times.  Although conditions of use will obviously influence the occurrence of soft errors, the error rate of modern memory chips is such that the typical PC with 128 MB of RAM would suffer a decay-based soft error once in 10 to 30 years.  This probability is so small that most manufacturers simply ignore this factor.

System-Level Errors:  Sometimes data traveling through the circuits of the computer gets hit by a noise glitch.  If a noise pulse is strong enough and occurs at an especially inopportune instant, it can be misinterpreted by the PC as a data bit.  Such a system-level error will have the same effect as a soft error in memory.  In fact, many such errors are reported as memory errors (glitch occurs between the memory and the memory controller, for example).  The most likely place for system-level errors to occur is on the buses.  A glitch on a data line will cause the PC to try to use or execute a bad bit of data or program code, resulting in an error.  An error on the address bus will cause the PC to find the wrong bit or byte of data and the unexpected value might have the same results as if it were a data bus error.  The probability of a system-level soft error occurring depends almost entirely on the design of the PC.  Poor design can leave the system especially vulnerable to system-level error and may in fact assist in the generation of such errors.  Overclocking a system is a common cause of system-level soft errors.

Hard Errors

When some part of a memory chip actually fails, the result is a hard error.  One common cause of a hard error is a jolt of static electricity introduced into the system by someone carrying a static charge.  Initially, the hard error may appear to be a soft error (i.e., a memory glitch) however, rebooting the system does not alleviate the symptom and possibly the system will not reboot if it cannot pass the memory system self-test.  Hard errors require attention.  Commonly the chip or module in which the error has occurred will require replacement.  [Note: operating memory chips beyond their speed rating will commonly cause hard errors to occur - installing wait states in the memory cycles is an option allowed by many advanced setup procedures, but the better solution is to install faster memory.]

Detection and Prevention of Errors

Most PCs check every bit of memory every time you go through a cold boot operation (although this can be bypassed to save time).  Soft errors will not be caught by this check but hard errors should be.  Memory errors can be combated using two different techniques: parity and detection/correction.  Either technique will ensure the integrity of your system's memory, which is best - or whether you need it at all - is to some extent a personal or application dependent choice.

Parity

In the earlier days of PCs, memory chips were much less reliable than the current chips.  Memory manufacturers added an extra bit of storage to every byte of memory.  The extra bit was called a parity check bit and it allowed for verification of the integrity of the data stored in memory.  Using a simple algorithm, the parity bit allows the PC to determine that a given byte of memory has the correct number of 0s and 1s in it.  If the count changes, an error has been detected.  Whenever a byte is written to memory, the value stored in the parity bit is set to either a logical 1 or 0 in such a way that the total number of logical one bits in the nine bits is always odd.  Every time a byte is read from memory, the PC counts the number of logical 1 bits in the nine bits representing the byte and verifies that this total number is odd.  If the total number of logical 1 bits is even, then an error is detected in this byte.  Note that this system is not infallible since the parity bit itself may have been the bit in error and it is also possible (although unlikely) that two bits in the byte have changed value and thus the parity bit would not detect this error.  

The philosophy behind the parity bit in the original IBM PC was that having bad data was worse than losing information through a system crash.  Consequently, most early PCs were designed to shut down when incorrect parity was discovered.  Typically, a "Parity Check Error" message was reported to the monitor.  Also note that the parity system is designed only to ensure the reliability of the data, it does not itself improve the reliability of the PC.  If an error in parity occurs, the parity system will shut down the computer as surely as a system crash.  The parity checking simply ensures that you will not operate with bad data.  Today, many PC manufacturers have abandoned straight parity checking altogether.  There are several reasons for this:  (1) Parity adds approximately 10-15% to the cost of memory in the PC.  (2) Parity checking steals vital space on the circuit boards, which is at a premium in today's compact systems.  (3) Increased reliability of the modern memory chip has rendered parity checking superfluous.  Reliability has increased to the point that a PC with 128 MB of RAM will likely not see a soft error during its useful lifetime.

Fake Parity

Fake parity memory is a technique for cutting costs in memory modules for PCs that require memory with built-in parity checking.  Instead of actually performing the parity check, these modules always send out a signal indicating that the parity is correct.  To your PC, a memory module with fake parity appears no different than a module which internally actually checks the parity.  This fact allows memory manufacturers to produce fake parity memory modules (which are typically much cheaper to make) and place them in systems which require parity checking memory.  Fake parity has two downsides.  (1) The savings in cost is not passed on to the consumer, as the fake modules are often sold as ordinary parity modules with no indication that they use fake parity.  (2) The fake parity module does not protect your system from operating with bad data, since in reality no parity checking is done.  Only one fake parity module in your system defeats the entire parity checking system.  Unfortunately, some vendors do not identify fake parity modules as such, passing them off as standard parity modules (and pocketing the extra profits). In general, the fake parity chips will look identical to the real parity chips.  The only way to positively identify them is through the use of a SIMM tester (since the fake parity chips operate at the hardware level, ordinary memory testing software will not detect the presence of the fake parity chip). Although they look identical and wear the same chip identification markings as the real parity chips, Kingston Technology (a memory chip vendor) has indicated that fake parity chips are commonly labeled with one of the following designations:  BP, GSM, MPEC, or VT.

Detection and Correction

Parity checking can only detect the error of a single bit in a single byte.  The general approach to the detection and correction of soft errors in memory is illustrated in Figure 13.  More elaborate error-detection schemes can detect larger errors.  Properly implemented, these techniques can fix single-bit errors without crashing the system.  Called Error Correction Code (or ECC), this scheme in its 
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Figure 14 – Logical View of Error Detecting/Correcting Memory
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most efficient form requires three extra bits per byte of memory.  As shown in Figure 14, the original data word is M bits long and there are an additional K bits added to the word that are used to detect and correct data bit errors.  The function f is simply the algorithm used to properly set the additional K bits.  The additional bits allow the system to detect the presence of an error and to locate and reverse a single bit error.  [Note that some will refer to this technology by the acronym EDAC for Error Detection And Correction.]  IBM uses ECC on mainframe computers and high-end PCs used as network file servers.  As PC memory systems expand, the extra expense of ECC technology will be justified.  As the width of the data bus continues to expand, ECC memory will be less expensive to implement.  For example, with Pentium's using a 64-bit data bus, the cost of extra memory for parity checking and ECC become the same.  Parity checking for this 64-bit bus would require 8 bits which is also the requirement for ECC memory.  In the next section we will look at a technique known as SECDED (Single Error Correction - Double Error Detection) which is a commonly used technique in many current memory systems.  The underlying principle behind this technique is still the parity bit but in this case multiple parity bits are used in an overlapping fashion to be able to isolate which bit is in error to allow for correction.  This technique is known as Hamming codes or Hamming functions.
Hamming Codes and SECDED Codes

Hamming Codes

One of the simplest forms of error correction is the Hamming Code developed by Richard Hamming of Bell Laboratories.  Hamming codes are capable of correcting single bit errors in a memory word.  Techniques that correct single bit errors in data are called SEC codes (Single Error Correction codes).  An extension to Hamming codes, called SECDED (Single Error Correction - Double Error Detection) allows for correction of single bit errors and the detection of double bit errors in a memory word.  SEC codes alone cannot detect double bit errors and will report an error free memory word if two bit errors have occurred.  Similarly, SECDED can correct single errors and detect double errors but will not be able to correct double bit errors nor detect triple bit errors.  SECDED counts on the fact that three bit errors occurring in a single word is so small that it is essentially impossible (but unfortunately - not entirely impossible).

Hamming codes add a group of parity bits (also called check bits) to the original data word.  How this is done is most easily viewed if the parity bits and the original data bits are distributed throughout the modified data word in the following fashion:  from a set of bits numbered 1 through 2 k-1, the bits whose numbers are powers of two are reserved for parity bits, where parity bit Pj is in bit position j = 2i, for some integer i = 0, 1, ....  A Hamming code generator accepts the data bits, places them in the bit positions with indices which are not powers of two, and computes the parity bits according to the following scheme.  The binary representation of the position number j is jk-1 ... j1  j0.   The value of parity bit P2i is chosen to give odd (or even) parity over all bit positions j such that ji = 1.  For example, bit position 4 = 22 will contain a parity bit that makes the parity odd over all bit positions that have the "4" bit turned on in their binary indices.  Thus each bit of the data word participates in several different parity bits.  The example shown below will illustrate how Hamming codes operate.  Notice in the first example shown below that bit position numbering begins with 1 rather than 0.  This is because the SECDED coding will use the 0 bit position as an overall parity bit which is not required of the Hamming code.  Note also that the parity bit in position 1 (P1) checks all the data bits with a 1 in their binary representation of their index (in other words all odd numbered data bits).  The parity bit in position 2 (P2) checks all the data bits with a 2 in the binary representation of their index.  The parity bit in position 4 (P4) checks all the data bits with a 4 in the binary representation of their index.  All parity bits are determined via the Hamming code generator and stored into the memory word along with the data bits at the time the word is sent to the memory by the processor for storage.  The addition of the parity bits is transparent to the microprocessor as they are added and removed by the memory system.  An alternative way of forming a Hamming code for a word of memory, which uses Venn diagrams, is given in Appendix B.

Example 1 - Hamming Code Generation

Even Parity Case:

Suppose our data string consists of 4 bits = [1110].  This will require 3 parity bits in positions  20 = 1 = P1,  21 = 2 = P2, and 22 = 4 = P4.  The data bits will be divided into positions 3, 5, 6, and 7 (labeled D3, D5, D6, and D7).  So the modified memory word looks like  [P1 P2 D3 P4 D5 D6 D7].   We will also assume even parity. 

Placing the data into this word produces [P1 P2  1  P4  1  1  0].   Calculation of the parity bits is as follows:  P1 = (D3, D5, D7) = (1 1 0), since the parity of these three bits is currently even, the parity bit P1 is set to 0 to make the parity across (P1 D3 D5 D7) even.  The memory word then becomes: [0  P2  1  P4  1  1  0].  Next, parity bit P2 is determined from data bits, P2 = (D3, D6, D7) = (1 1 0), since these three bits have even parity, the parity bit P2 must be set "off" (set to 0) so that the parity across (P2 D3 D6 D7) is even.  The memory word then becomes  [0  0  1  P4  1  1  0].  Finally, parity bit P4 = (D5, D6, D7) = (1 1 0),  again these bits have even parity, so the parity bit P4 = 0 to give even parity across (P4 D5 D6 D7).  The final memory word with the parity bits in place is:  [0  0  1  0  1  1  0].  This "word" is what is stored in memory and subsequently retrieved by the memory system.

Overall Odd Parity:

Using the same example as above, now we assume that the overall parity is to be odd.  Placing the data into this word produces [P1 P2  1  P4  1  1  0].   Calculation of the parity bits is as follows:  P1 = (D3, D5, D7) = (1 1 0), since the parity in these three bits is even (there are two "on" bits) the parity bit needs to be set to 1 to make the parity across (P1 D3 D5 D7) be odd.  Thus P1 = 1.  The memory word then becomes [1  P2  1  P4  1  1  0].  Next parity bit P2 is determined from data bits, P2 = (D3, D6, D7) = (1 1 0), since the parity in these bits is currently even, P2 must be set "on" so that the parity across (P2 D3 D6 D7) is odd.  The memory word then becomes [1  1  1  P4  1  1  0].  Finally, parity bit P4 will be set to 1 since P4 = (D5 D6 D7) = (1 1 0) which is even parity so to give odd parity across (P4 D5 D6 D7) P4 must be 1.   The final memory word with the parity bits in place is:

[1  1  1  1  1  1  0].  This "word" is what is stored in memory and subsequently retrieved by the memory system.
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At the time of retrieval the parity is checked to determine if the word retrieved matches the word that was stored.  This is done through the use of a check word (also called a syndrome word). Each parity bit at the time of retrieval is checked against the value of the parity that was stored - if the two values do not match the corresponding check bit in the check word is set "on", otherwise it is set "off".  If there are no parity errors the parity bits are stripped off and the data word is sent to the processor.  If there is a parity error, then an error correction routine must be invoked that will correct the bit in error, then the parity bits are stripped off and the data word is sent to the processor.  Example 3 below illustrates how Hamming codes can be used to detect and correct single bit errors in memory words via the generation of a check word (also called a syndrome word).  This technique will be developed in more detail after Example 3 when we extend the technique to larger data words.


To clarify the concept of the check word and how SEC codes work let’s build such a code for 8-bit data words.  Table 2 indicates that an 8-bit data word will require 4 check bits (parity bits).  Figure 14 illustrates that the compare logic for a SEC code will receive as input two K-bit values (one set from the memory word and one set from the generating algorithm).  A bit-by-bit comparison is performed by taking the exclusive-or (XOR) of the two inputs (see the Digital Logic section of the notes if you’ve forgotten what the XOR operation does).  The resulting K-bit “word” is syndrome word (or check word).  Each bit in the syndrome is 0 or 1 according to whether or not there is a match in the bit positions for the two inputs.  [Since the syndrome is K-bits wide, it will be capable of representing values between 0 and (2K – 1).  A value of 0 indicates that no errors where detected, leaving (2K – 1) values to indicate, if there is an error, the position of the bit which is in error.  It is important to realize that in the words retrieved from memory that a bit error can occur in any one of the M data bits or the K check bits.  Therefore it must be that: (2K – 1) ( M + K.  This equation gives the number of check bits required to correct single bit errors in data words containing M bits.  Table 2 summarizes several of these values for both SEC and SECDED codes.

There are several properties that the syndrome word should have if error correction (and later double error detection) is to be handled efficiently:

· If the syndrome contains all 0s, no error has occurred.

· If the syndrome contains one and only one bit set to 1, then an error has occurred in one of the 4 check bits and not in the data word itself.

· If the syndrome contains more than one bit set to 1, then the numerical value of the syndrome indicates the position of the data bit which is in error.  This data bit can then be inverted for correction.

To achieve these characteristics, the data and the check bits are arranged into a 12-bit word as we previously did with our four-bit word examples.  Bit positions in the word are numbered from 1 to 12 (the zero bit will be used for SECDED codes).  Those bit positions whose position numbers are powers of 2 are designated as the check bits.  The modified word looks like (bit positions that are powers of 2 are highlighted – these are the check bit positions):

	Bit position
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	Binary position number
	0001
	0010
	0011
	0100
	0101
	0110
	0111
	1000
	1001
	1010
	1011
	1100

	Check bit
	C1
	C2
	
	C4
	
	
	
	C8
	
	
	
	

	Data bit
	
	
	D1/3
	
	D2/5
	D3/6
	D4/7
	
	D5/9
	D6/10
	D7/11
	D8/12

	Memory word
	C1
	C2
	D1/3
	C4
	D2/5
	D3/6
	D4/7
	C8
	D5/9
	D6/10
	D7/11
	D8/12


The data bits are shown if the form: Dx/y where x is the bit position in the original memory word and y is the bits position in the augmented memory word.  Which notation you use is up to you; in the earlier examples I used the latter notation and will continue to do so here.  The check bit values are calculated as follows (where  ( indicates the XOR operation):

C1 = D3 ( D5 ( D7 ( D9 ( D11  [bits 3, 5, 7, 9, and 11 all have “1” bit on]

C2 = D3 ( D6 ( D7 ( D10 ( D11 [bits 3, 6, 7, 10, and 11 all have “2” bit on]

C4 = D5 ( D6 ( D7 ( D12  [bits 5, 6, 7 and 12 all have “4” bit on]

C8 = D9 ( D10 ( D11 ( D12  [bits 9, 10, 11, and 12 all have “8” bit on]

As shown, each check bit operates on every data bit position whose position number contains a 1 in the corresponding column position.  Thus, data bit positions 3, 5, 7, 9, and 11 all contain the term 20; bit positions 3, 6, 7, 10, and 11 all contain the term 21; bit positions 5, 6, 7, and 12 all contain the term 22; and bit positions 9, 10, 11, and 12 all contain the term 23.   A slightly different view of this is that bit position n is checked by those bits Ci such that (i = n.  For example, bit position 7 is checked by bits in positions 4, 2, and 1; and 7 = 4 + 2 + 1.

Example 4 verifies that this scheme properly detects single bit errors and provides the necessary information to correct the bit in error.


SECDED Codes

SECDED coding extends the functionality of Hamming codes beyond the detection and correction of single bit errors to include the detection (but not correction) of double bit errors.  This extension takes the form of adding a single parity bit in the P0 position of the memory "word".  This P0 parity bit is set so that the overall parity of every bit in the memory word, including all other parity bits, is odd (or even if even parity is used).  If a single bit is in error the Hamming code checks will determine the exact bit which is in error.  Detecting two bits in error works as follows: if two bits are in error then the Hamming code check word will indicate an error (note: the error position however will be incorrectly calculated since two bits are in error) and the parity bit P0 will indicate no parity error overall.  If a single bit error has occurred the Hamming code check word will indicate and error and so will the overall parity error bit P0.  If two bit errors have occurred, the overall parity will be indicated as correct - but the Hamming code check will indicate an error.  Example 5 illustrates this scenario.

SECDED coding is relatively more efficient as the size of the memory word increases.  In the examples shown above, our 4-bit data word required 3 parity bits  which roughly doubled the size of the memory word.  However, a 64-bit word requires only 8 parity bits.  The number of bits needed for the parity system increases roughly as log2 of the number of data bits.  Table 2 illustrates how the number of check bits/word increases with the two different types of error correction.

	
	Single Error Correction
	Single Error Correction – Double Error Detection

	Data Bits
	Check Bits
	Word-length Increase
	Check Bits
	Word-length Increase

	8
	4
	50%
	5
	62.5%

	16
	5
	31.25%
	6
	37.5%

	32
	6
	18.75%
	7
	21.875%

	64
	7
	10.94%
	8
	12.5%

	128
	8
	6.25%
	9
	7.03%

	256
	9
	3.52%
	10
	3.91%


Table 2 – Increase in Word Length Required by Error Correction Techniques


The success of Hamming codes and SECDED rely heavily on the probability that double bit errors occur very infrequently and that the probability of a triple bit error in a single memory word is essentially non-existent.

Beyond Single Bit Error Correction

We have been dealing exclusively with error detection and correction schemes that apply specifically to the storage of data in semiconductor memory chips.  This type of error occurs randomly within the memory and, as we have mentioned, occurs with extremely small probability.  The continued increase in the number of bits in memory and the continued decrease in the space occupied by those bits is sufficient justification for the overhead of SECDED coding of the memory.  Most modern DRAM includes SECDED coding and logic.  With serial transmission of data, the assumptions that we have been working under, namely that errors are independent of others, breaks down.  At high bandwidth transmission rates, a momentary disturbance in a single serial channel will easily cause several successive bits to be wrong.  Parity based codes, like the SECDED codes, are not nearly as useful in this situation.  To handle what are termed burst errors (a sequence of contiguous bits in error), more complex codes such as cyclic-redundancy check (or CRC codes) are employed.  The theory of operation of CRC codes goes way beyond what we want to consider here, but in practice they are fairly straightforward to implement.  Basically, a CRC generator consists of a shift register, some XOR gates, and a generating polynomial associated with the particular CRC that is used.  Some of the different CRC polynomials are shown in Table 3. Figure 15 illustrates the hardware set-up to implement CCITT-CRC.

	Name
	Code Length
	Generating Polynomial

	CRC-12
	12 bits
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	CCITT-CRC
	16 bits
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	CRC-32
	32 bits
	
[image: image5.wmf]1

x

x

x

x

x

x

x

x

x

x

x

x

x

x

2

4

5

7

8

10

11

12

16

22

23

26

32

+

+

+

+

+

+

+

+

+

+

+

+

+

+





Table 3 – Generating Polynomials for Some Common CRC Codes
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Figure 15 – Hardware to Implement CITT-CRC code

The CRC code illustrated in Figure 15 is used for bit streams of length 8 and results in a transmitted stream of length 16 (i.e., doubling the number of bits in the “word”.  (CRC-12 is used for 6-bit data streams and results in a transmitted word of length 12, hence the 12 in CRC-12.)

To use a CRC code, a number of data words are reformatted into a serial stream of bits.  As the bits are sent out, the transmitter computes the CRC by applying all bits to the shift register CRC generator.  When all bits have been transmitted, the transmitter appends the CRC bits to the data and sends them as well.  The receiver independently generates is own version of the CRC for the data bits it receives and compares it to the transmitted CRC.  If an error has occurred the receiver reports the error to the transmitter, so that it can retransmit the data.

As the above scenario implies, CRC codes have only the ability to detect errors in the transmission; they do not have the capability of correcting any error.  The length of the string of bits that are checked by a CRC code is arbitrarily long.  The tradeoff is that the longer the stream of bits that is checked, the longer will be the stream that must be retransmitted if an error is discovered.  The probability that the check will succeed even though some bits are in error depends upon the number of bits checked and the generating polynomial that is used.  Through proper selection of the generating polynomial CRC codes will:

· detect all single bit errors in the data stream

· detect all double bit errors in the data stream

· detect any odd number of errors in the data stream

· any burst error for which the length of the burst is less than the length of the generating polynomial

· most all larger burst errors

Appendix A – Packaging the Memory

An actual memory chip is a silver of silicon smaller than a fingernail and so delicate that exposure to ordinary air will cause it to self-destruct.  To make memory easier to handle, memory chips (like all semiconductor chips) are hermetically sealed in a larger case that both protects the silicon and provides a convenient way for handling the chips and attaching it to circuit assemblies.

Almost universally, memory chips are individually packaged as integrated circuits commonly called discrete chips.  Early PCs were designed to accept these discrete chips in their memory sockets.  Normally, nine chips comprised a memory bank.  With the advent of 32-bit processors, memory requirements have become so large that discrete chips are impractical for memory.  One bank would typically require 36 chips and multiple banks would quickly consume more board space than is available in most PCs.  The modern alternative package is the memory module, which simply puts several discrete chips onto a single small plug-in circuit board.  Memory modules are more compact that discrete chips for two primary reasons: (1) chips are soldered to the memory module which eliminates space-wasting sockets and allows the chips to be placed closer together.  (2) The chips on the memory module do not require manipulation (except by machine during manufacture) and they can use more compact surface mount packages.  A single memory module just a few inches long can accommodate a full bank of memory.  Nearly all new PCs use memory modules of some type, so you will rarely have to deal with individual memory chips.  Only very old PCs and video boards still use discrete chips for expansion.  The construction of a memory module is straightforward and simply a second level of integration above the basic memory chip.  Several chips are brought together on a single glass-epoxy circuit board with their leads soldered down to the circuit traces and the entire assembly is terminated in an external connector suitable for plugging into a socket or soldering to another circuit board.  

Memory modules come in a variety of types.  Most have CELP (Card Edge Low Profile) connectors with anywhere from 30 to 83 contacts on each side of the module.  SIMMs (Single Inline Memory Modules) connect the pins on opposite sides of the board together so that each pair provides a single signal contact.  DIMMs (Dual Inline Memory Modules) put separate signals on each contact so that the contacts on each side of the board can serve a different purpose.  SIPPs (Single Inline Pin Packages) modules have a row of pins projecting from the bottom of the module instead of using edge connectors.  While SIMMs and DIMMs can be removed many times (and without the use of tools) a SIPP is most commonly soldered in place to prevent damage to the fragile pins (although special sockets can also make these removable - remember the Socket 7 used by the Pentium chip I had in class one day).  The number of connections on the module further categorize the memory module.  Four types are currently popular:  30-pin and 72-pin SIMMs, 72-pin Small Outline DIMMs (SODIMMs), and 168-pin DIMMs.  SIPPs usually have 30 pins.  We will examine each of these module types separately.  A new type of memory module which supports Rambus memory is that of a RIMM (Rambus Inline Memory Module) which is a derivative of the DIMM and we will examine it separately as well.

30-Pin SIMMs
The original SIMM designs appeared on the market as a convenience as PC memories expanded.  Since PCs deal with memory in bytes - it made since to package the memory in byte-wide containers.  The SIMM was not much more than the normal addressing connections for the individual memory chips, ganged together on the SIMM itself with sufficient extra connections to provide the necessary bus width. The original 30-pin SIMMs weren't much more than 9 chips tied together on a single small board.  In keeping with the PCs of the time, the first 30-bit SIMMs allocated 9-bits/byte with the additional bit being a parity bit.  This technique was so common that many people referred to 30-pin SIMMs as 9-bit SIMMs.  As memory technology improved and parity checking tended to be ignored, 8-bit SIMMs became popular.  These 8-bit SIMMs did not include a parity check bit but used an identical pinout (except for pins 26, 28, and 29 used in parity bit SIMMs).  Since non-parity systems will usually ignore the parity signals from a nine-bit SIMM, you can usually substitute a 9-bit SIMM for an 8-bit SIMM in a non-parity PC (or a printer).  On the other hand you cannot substitute an 8-bit SIMM for a 9-bit SIMM because most parity systems will immediately register a parity error due to the lack of the extra bit.

There are two distinct formats used in SIMMs - three-chip versus nine-chip parity checked SIMMs and two-chip versus eight-chip non-parity checked SIMMs.  The three chip variety is like a three-chip memory bank.  It links two nibble-wide chips for data storage and a bit-wide chip for parity.  Nine-chip SIMMs put each bit of a byte into a separate chip.  Two-chip SIMMs provide byte-wide memory without parity checking so they do away with the parity chip.  Eight-chip SIMMs put each bit of a byte into a different chip and likewise do not contain the parity bit chip..

Since 30-pin SIMMs use byte-wide data buses, you need multiple SIMMs to make a single memory bank for most microprocessors.  PCs with 16-bit data buses (80286 and 80386SX microprocessors) will require two 30-pin SIMMs per bank.  PCs with 32-bit data buses (80386Dx and 80486 microprocessors) will require four 30-pin SIMMs per memory bank.  PCs with 64-bit data buses, such as the Pentium series, would require eight 30-pin SIMMs per memory bank.  This number is almost as bad as using discrete memory chips.  As a result 30 pin SIMMs have fallen from favor in more advanced systems.

72-pin SIMMs
Although 30-pins SIMMs were an improvement over discrete memory chips, they fall far short of the requirements of modern PCs using wide data buses.  In response to the need for a simplified expansion technique, PC manufacturers in 1987 (led by IBM) created SIMMs with more pins to accommodate wider buses.  The result was a 72-pin SIMM that packs 4 byte-wide banks onto a single module.

Both parity and non-parity 72-bit SIMMs are available.  The former are often called 36-bit SIMMs while the later are frequently called 32-bir SIMMs.  SIMMs are generally identified using the following nomenclature:  total capacity in megabytes followed by the width of the module's data bus.  For example, a 2x36 SIMM would store 2 Mbytes of 36-bit wide data (i.e., parity checked data).   A 16x32 SIMM would contain 16 Mbytes of non-parity data using a 32-bit wide data bus.

 Dual Inline Memory Modules
Even 72-pin memory modules fall short when it comes to Pentium architectures.  With their 64-bit data buses, these microprocessors would require two 72-pin SIMMs per memory bank (just as the x486 machines required four 30-bit SIMMs).  To provide easier expansion for 64-bit machines, memory manufacturers  developed modules with more connections to permit wider addressing.  The resulting modules have 168 separate connections, arrayed across two sides of the module, and called Dual Inline Memory Modules (or DIMMs).  

Rambus Memory Modules or RIMMs

Due to the radical nature of the interface required by Rambus memory, memory manufacturers basically redesigned individual modules to create a special memory module, called a RIMM (Rambus Inline Memory Module), to accommodate this technology.  The basic module appears similar to a standard DIMM with the individual memory chips soldered to a circuit board substrate that links to a socket using a conventional edge connector.  Despite the relatively narrow bus used by the Rambus design (16 bits) the RIMM package pushes the pin count to 184.  RIMMs also operate at a lower voltage, 2.5 volts, compared to DIMMs which operate at 3.3 volts.  Future RIMMs will probably operate at 1.8 volts.  The standard 184-pin package supports both non-parity and SECDED RIMMs.

Small Outline DIMMs (SODIMMs)
SIMMs are too large for notebook machines due to their miniature size.  The connectors on different sides of the module carry different signal (as in normal DIMMs but not in normal SIMMs).  Thus the 72-pin SIMM length was trimmed in half, but since both sides of the connectors carry different signals the module is a DIMM.  The module has the 72-pin configuration of a standard SIMM and the name reflects that the module is small compared to a SIMM,  yet has the connector characteristics of a DIMM.  Each SODIMM has four separate banks of memory which allow their use in machines with data buses that are one, two, or four bytes wide.  Recently a newer memory module for notebook systems has become available.  Using the same technique for shrinking the physical size as the SODIMM, this new module sports 144-pins and is referred to as a SoDIMM.  The 144-pin SoDIMM uses a 64-bit interface, just like the 168-pin DIMMs, however, it packs the same amount of memory into an overall smaller package.

SIPPs (Single Inline Pin Package Module)
SIPPs use pin connectors rather than edge connectors like SIMMs and DIMMs.  Most often these chips are soldered into place but occasionally they are placed into socket connections to facilitate removal.  Electrically, SIPPs are identical to 30-pin SIMMs, although they are physically smaller.  The spacing between the pins is fixed at the industry standard of 1/10th of an inch.  Some manufacturers offer low-profile SIPPs which are designed to fit inside the tight spaces between expansion bus connectors or any location where headroom is tight.

Appendix B – Generation of Hamming Codes using Venn Diagrams

[Note:  This technique produces a parity bit set which differs from that explained in the notes.  This is not a problem as long as the technique is uniformly applied.  This technique is useful only for small data words and gets very messy with longer data words.]

Assume for the purposes of this appendix that a data word in our memory is four bits long (M = 4).  Figure B1a illustrates the generation of the Hamming code for the data word (1110)2.  The three intersecting circles provide seven “compartments”.  The four data bits are assigned to the innermost compartments.  The remaining three compartments are filled with the parity bits (check bits) that comprise the Hamming code for the data word.  The check bits are chosen so that the total number of 1s in the specific check bit circle is an even number.  Since the circle identified as “A” includes three data 1s, the check bit in that circle must be set to 1 as well, thus the total number of 1 bits in that circle is even (Figure B2b).  Now if an error occurs in one of the data bits (Figure B2c where the leftmost data bit has changed from a 1 to a 0), it can be easily found.  The check bits in circles A and C will indicate a discrepancy between what was stored and what was retrieved, but the check bit for circle B will not indicate the discrepancy.  Only one of the seven compartments is in both A and C but not B, therefore the error has occurred in that bit, and its value should be changed by the memory system before forwarding the data word to the processor (Figure B2d).


Figure B2 – Venn Diagrams Illustrating Hamming Code Generation

Appendix C – Examples 2 & 3 Repeated with Even Parity

Hamming Code Generation
Suppose our data string consists of 4 bits = [1011].  This will require 3 parity bits in positions  20 = 1 = P1,  21 = 2 = P2, and 22 = 4 = P4.  The data bits will be divided into positions 3, 5, 6, and 7 (labeled D3, D5, D6, and D7).  So the modified memory word looks like  [P1 P2 D3 P4 D5 D6 D7].  In this example we will assume an even parity.  [Example 2 appears in the main text with odd parity.]

Placing the data into this word produces [P1 P2  1  P4  0  1  1].   Calculation of the parity bits is as follows:  P1 = (D3, D5, D7) = (1 0 1) the parity in these three bits is even (there are two "on" bits) so the parity bit needs to be set to 0 to make the parity across (P1 D3 D5 D7) be even.  Thus P1 = 0.  The memory word then becomes [0  P2  1  P4  0  1  1].  Next parity bit P2 is determined from data bits, P2 = (D3, D6, D7) = (1 1 1), since the parity in these bits is currently odd, P2 must be set "on" so that the parity across (P2 D3 D6 D7) is even.  Since P2 = 1, the memory word becomes [0 1  1  P4  0 1  1].  Finally, parity bit P4 = (D5 D6 D7) = (0 1 1) so the parity bit needs to be set "off" to give even parity across (P4 D5 D6 D7).  Thus, P4 = 0 and the final memory word with the parity bits in place is: 

[0 1  1  0  0  1  1].  This "word" is what is stored in memory and subsequently retrieved by the memory system.

Suppose that upon retrieval the memory word has a value [0 1 1 0 0 0 1].  In other words the bit in position D6 is in error.  A check word (C4 C2 C1) is built in which the bits in the check word are set to 1 if the parity check indicates a parity error for the corresponding parity bit.  P1 = 0 and a check of the retrieved bits (D3 D5 D7) = (1 0 1) has even parity.  Thus P1 agrees with the retrieved parity so C1 = 0.  A similar technique is used to determine the values of C2 and C4.  In this example - these values are:  P2 = 1 and the parity check of the retrieved data bits (D3 D6 D7) = (1 0 1) has even parity.  P2 indicated that the stored data bits (D3 D6 D7) had odd parity so an error has been detected.  Since the parity check is in disagreement with the parity bit P2, C2 is set to 1; C2 = 1. Exactly which bit is in error has yet to be determined.  Finally, P4 = 0 and the parity check of the retrieved bits (D5 D6 D7) = (0 0 1) has odd parity indicating that P4 should be 1, yet P4 = 0 so again, an error has been detected and C4 is set to 1 to indicate the disagreement in value.  The check word [C4 C2 C1] has a value of [1 1 0] indicating that an error has been detected in position D6 – since the check word represents the bit pattern for the number 6, so the bit in D6 will be inverted and the parity bits stripped off.  The value of the data word returned to the processor will be 1011 just as it was stored.
Example 2 - Hamming Code Generation





Suppose our data string consists of 4 bits = [1011].  This will require 3 parity bits in positions  20 = 1 = P1,  21 = 2 = P2, and 22 = 4 = P4.  The data bits will be divided into positions 3, 5, 6, and 7 (labeled D3, D5, D6, and D7).  So the modified memory word looks like  [P1 P2 D3 P4 D5 D6 D7].  In this example we will assume an odd parity.  This example is repeated with even parity in Appendix C.





Placing the data into this word produces [P1 P2  1  P4  0  1  1].   Calculation of the parity bits is as follows:  P1 = (D3, D5, D7) = (1 0 1) the parity in these three bits is even (there are two "on" bits) so the parity bit needs to be set to 1 to make the parity across (P1 D3 D5 D7) be odd.  Thus P1 = 1.  The memory word then becomes [1  P2  1  P4  0  1  1].  Next parity bit P2 is determined from data bits, P2 = (D3, D6, D7) = (1 1 1), since the parity in these bits is currently odd, P2 must be set "off" so that the parity across (P2 D3 D6 D7) is odd.  The memory word then becomes [1 0  1  P4  0 1  1].  Finally, parity bit P4 = (D5 D6 D7) = (0 1 1) so the parity bit needs to be set "on" to give odd parity across (P4 D5 D6 D7).





The final memory word with the parity bits in place is:  [1  0  1  1  0  1  1].  This "word" is what is stored in memory and subsequently retrieved by the memory system.





Example 3 – Use of SEC Codes To Detect and Correct Bit Single Bit Errors





Using Example 2 from above (with odd parity), suppose that upon retrieval the memory word has a value [1 0 1 1 0 1 0].  In other words the bit in position D7 is in error.  Upon retrieval the value of the check bits are set depending upon the value of the corresponding parity bit and the data bit values that are retrieved.  P1 = 1 and (D3 D5 D7) = (1 0 0) which is odd parity so P1 should be 0 to indicate this but is in fact equal to 1.  This is a mismatch between what P1 is and what the check says P1 should be - thus C1 is set to 1 (indicating the mismatch between the parity bit and the retrieved value).  A similar technique is used to determine the values of C2 and C4.  In this example - these values are:  P2 = 0 and (D3 D6 D7) = (1 1 0) which is even indicating that P2 should be "on" but it is in fact "off" so C2 is set "on" indicating the mismatch.  P4 = 1 and (D5 D6 D7) = (0 1 0) which is odd indicating that P4 should be "off" but it is in fact "on" again this is a mismatch so C4 is set "on".  Thus the check word [C4 C2 C1] has a value of [1 1 1] indicating that an error has been detected in position D7 - so the bit in D7 will be inverted and the parity bits stripped off.  Thus the value of the data word returned to the processor will be 1011 just as it was stored.





Example  5 - SECDED Double Bit Error Detection





Let’s assume the 4-bit data word 1011 and even overall parity.  Parity bit P0 is added to yield the memory word: [P0  P1  P2  D3  P4  D5  D6  D7].  Bits P1 through D7 are set as follows:


P1 = (D3 ( D5 ( D7) = 1 ( 0 ( 1 = 0


P2 = (D3 ( D6 ( D7) = 1 ( 1 ( 1 = 1


P4 = (D5 ( D6 ( D7) = 0 ( 1 ( 1 = 0





The memory word becomes: [P0  0  1  1  0  0  1  1] at this point.  Now P0 is set to 0 since the overall parity in positions P1 through D7 is currently even, thus setting P0 to 0 retains an even overall parity.  The final memory word that is stored in the memory is: [0  0  1  1  0  0  1  1].





Now let's suppose that data bits D3 and D6 are in error states when the word is retrieved from the memory.  Thus the word retrieved from the memory is: 


[0 0 1 0 0  0 0 1].  Generation of the check bits C1, C2 and C4 proceeds according to:


C1 = (D3 ( D5 ( D7) = 0 ( 0 ( 1 = 1


C2 = (D3 ( D6 ( D7) = 1 ( 0 ( 1 = 0


C4 = (D5 ( D6 ( D7) = 0 ( 0 ( 1 = 1


Generation of the check word produces:   (0 1 0) (bitwise (1 0 1) = 111


The check word indicates that there is a bit error in position 7, but the overall parity check with P0 indicates that there is no overall parity error – thus a double bit error has been detected but which two bits are in error cannot be determined.


						     


Now let's suppose that only data bit D6 is in error when the word is retrieved from the memory.  The memory word retrieved is: [0  0  1  1  0  0  0 1].  


Generation of the check bits C1, C2 and C4 proceeds according to:


C1 = (D3 ( D5 ( D7) = 1 ( 0 ( 1 = 0


C2 = (D3 ( D6 ( D7) = 1 ( 0 ( 1 = 0


C4 = (D5 ( D6 ( D7) = 0 ( 0 ( 1 = 1


Generation of the check word produces:   (0 1 0) (bitwise (1 0 0) = 110


The check word indicates that there is a bit error in position 6 and the overall parity check with P0 indicates that there is an overall parity error since the retrieved word has odd parity yet P0 = 0 indicating overall even parity.  Thus a single bit error has been detected in bit position 6.  Inverting this bit produces a data word of 1011 which is the originally stored data word.





Hamming code check bit C1 = (0  1  1) = even, so P1 should be 1, it is 1 so C1 is set to 0 to indicate no error.  C2 = (0 1 1) = even, so P2 should be 1, but it is 0 so C2 = 1.  C4 = (1 1 1) = odd, so P4 should be 1, and it is, so C4 = 0.  The Hamming code check word C4C2C1 = [0 1 0] = 2 and the overall parity of the retrieved memory word (all bits except for P0) is odd indicating that P0 should be set to 0,  in fact P0 = 0 indicating no overall parity error.  Thus the Hamming code parity check has indicated an error but the overall parity is correct which means that two bits are in error and the value of the Hamming code check word is meaningless except to indicate an error condition.  Its value is not important since two bit errors cannot be corrected with SECDED.








Example 4 – Verification of the SEC Code





Assume that the original 8-bit data word is:  10011100 (with D1 in the MSB position). The data word is placed into memory in the following bit positions in the augmented memory word: 


data bit�
1�
0�
0�
1�
1�
1�
0�
0�
�
augmented word position�
3�
5�
6�
7�
9�
10�
11�
12�
�
The check bits are calculated as:


C1 = D3 ( D5 ( D7 ( D9 ( D11 = 1 ( 0 ( 1 ( 1 ( 0 = 1


C2 = D3 ( D6 ( D7 ( D10 ( D11 = 1 ( 0 ( 1 ( 1 ( 0 = 1


C4 = D5 ( D6 ( D7 ( D12 = 0 ( 0 ( 1 ( 0 = 1


C8 = D9 ( D10 ( D11 ( D12  = 1 ( 1 ( 0 ( 0 = 0





The word actually stored in the memory will be:  111100101100


Now suppose that the data bit in position 6 (data bit 3) sustains an error and is changed from 0 to 1.  When the word is loaded from the memory and the check bits are recalculated we’ll have:





C1 = D3 ( D5 ( D7 ( D9 ( D11 = 1 ( 0 ( 1 ( 1 ( 0 = 1


C2 = D3 ( D6 ( D7 ( D10 ( D11 = 1 ( 1 ( 1 ( 1 ( 0 = 0


C4 = D5 ( D6 ( D7 ( D12 = 0 ( 1 ( 1 ( 0 = 0


C8 = D9 ( D10 ( D11 ( D12  = 1 ( 1 ( 0 ( 0 = 0





Comparing the new check bits to the old check bits forms the syndrome word which will be:	C8  C4  C2  C1


		           0    1     1     1    original check bits as stored


		      (  0     0    0     1     new check bits computed after retrieval


			  0    1     1     0


Since the syndrome word contains more than a single 1-bit, the value is the bit in error, which is the bit in position 6 (data bit 3).
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