
Computer Science Department
University of Central Florida

Tutorial 9:
Working with XHTML

COP 3175 – Internet Applications

Tutorial 9: Working with XHTML page 2 © Jonathan Cazalas

Objectives

 Describe the history and theory of XHTML
 Understand the rules for creating valid XHTML

documents
 Apply a DTD to an XHTML document
 Understand how to apply the XHTML namespace
 Test an XHTML document under the transitional

DTD
 Test an XHTML document under the strict DTD
 Explore the use of character and parsed character

data

Tutorial 9: Working with XHTML page 3 © Jonathan Cazalas

Tutorial 9 Website

 Wizard Works
 Company making customized fireworks
 “Tom”, the head of advertising, designs the

website and does a decent job
 But the site is now old and outdated

 Tom wants the code to be updated, reflecting
current standards and practices

 Specifically, he wants us to rewrite the code in
XHTML rather than HTML

 And he wants us to find ways to confirm that the
code is up to par and meets XHTML standards

Tutorial 9: Working with XHTML page 4 © Jonathan Cazalas

Introducing XHTML

 SGML (Standard Generalized Markup
Language)
 Language introduced in the 1980s

 Describes the structure and content of documents or
any type of information readable by machines

 Device-independent and system-independent
 documents written in SGML can be used, in theory, on

almost any type of device and under almost any type of
operating system

 Bottom line:
 VERY powerful and flexible markup language

Tutorial 9: Working with XHTML page 5 © Jonathan Cazalas

Introducing XHTML

 SGML (Standard Generalized Markup
Language)
 Its strength (power and flexibility) made it a

difficult language to learn and apply
 Official specification is over 150 pages long
 Covering scenarios even top programmers won’t

encounter

 Result:
 SGML is limited to organizations that can afford the cost

and overhead of maintaining complex SGML
environment

Tutorial 9: Working with XHTML page 6 © Jonathan Cazalas

Introducing XHTML

 HTML as an SGML Application
 SGML is too complex for the World Wide Web

 Web page authors need only a simple markup language
that is easy to use

 However, SGML is used to make other markup
languages that are based on the SGML
architecture

 One such markup language: HTML
 Standards get confusing among browsers
 Can be applied inconsistently

Tutorial 9: Working with XHTML page 7 © Jonathan Cazalas

Introducing XHTML

 Problems with HTML
 Web browsers develop their own unique “flavor”

of HTML
 Providing customers with new and useful features not

available in other browsers

 Example:
 Netscape introduced the frameset and frame elements

 Neither were part of the HTML specs at that time
 Microsoft introduced the iframe for IE

 Another departure from the official HTML specs at the time

 Some extensions were welcomed and officiall
adopted…others were not

Tutorial 9: Working with XHTML page 8 © Jonathan Cazalas

Introducing XHTML

 Problems with HTML
 Result:

 Standards get confusing among browsers
 One kind of HTML for each browser, or, worse, for each

version of the browser
 These innovations/extras certainly increased the scope

and power of HTML
 But they did so at the expense of clarity

 Web designers could no longer spend all their time on
simply making a quality looking website
 Now they had to spend a lot of time ensuring their sites

worked across the various browsers and browser versions

Tutorial 9: Working with XHTML page 9 © Jonathan Cazalas

Introducing XHTML

 Problems with HTML
 Another Problem:

 HTML can be applied inconsistently (wrongly)
 Yet, most browsers end up rendering it correctly

 Example:
 The following code is wrong:
 <body>
 <h1>Web Page Title
 </body>

 Why?
 The h1 element has not be closed with an ending </h1> tag

 Most browsers, however, will still show this correctly

Tutorial 9: Working with XHTML page 10 © Jonathan Cazalas

Introducing XHTML

 Problems with HTML
 Result:

 Browsers are forgiving of mistakes
 One may argue that this helps the Web page designer

 But this causes confusion, as different Web pages end
up employing HTML code in markedly different ways

 Solution:
 It’s better for everyone if Web page code adheres

to a set of standards for content and structure
 This solution involved rewriting HTML in terms of

XML

Tutorial 9: Working with XHTML page 11 © Jonathan Cazalas

Introducing XHTML

 XML and XHTML
 XML (Extensible Markup Language)

 Think of this as “SGML light”
 XML is a language like SGML in that it is used to create

markup languages
 But it doesn’t have the complexity and size of SGML

 XML has been used to create many markup languages:
 MathML for mathematical content
 CML for documenting chemical structures
 MusicML for describing musical scores
 and much more

Tutorial 9: Working with XHTML page 12 © Jonathan Cazalas

Introducing XHTML

 XML and XHTML
 XML Example:

 The following is an excerpt from a MusicML document
describing Mozart’s Piano Sonata in A Major

 Notice that the appearance is very similar to HTML
 to be expected since they are both markup languages

<work>
 <work-number>K. 331</work-number>
 <work-title>Piano Sonata in A Major</work-title>
</work>
<identification>
 <creator type="composer">Wolfgang Amadeus Mozart</creator>
 <rights>Copyright 2003 Recordare LLC</rights>
</identification>

Tutorial 9: Working with XHTML page 13 © Jonathan Cazalas

Introducing XHTML

 XML and XHTML
 All of this leads to XHTML
 What is XHTML?

 It is a reformulation of HTML written in XML

 The W3C maintains the specifications and
standards for XHTML
 Several versions of XHTML have been released and are

in the process of being released

 The graphic on the next pages summarizes these
versions…

Tutorial 9: Working with XHTML page 14 © Jonathan Cazalas

Introducing XHTML

Tutorial 9: Working with XHTML page 15 © Jonathan Cazalas

Introducing XHTML

 XML and XHTML
 Most widely accepted version is XHTML 1.0

 specs closely match that of HTML 4.0

 XHTML 2.0 is still in draft form
 Not supported by the Web community for many reasons
 Will not be backwards compatible with earlier versions of

XHTML
 This is a problem, which makes many focus on…

 XHTML 5.0
 This, along with HTML 5.0, is were the research and

development is currently focused

Tutorial 9: Working with XHTML page 16 © Jonathan Cazalas

Introducing XHTML

 Creating an XHTML Document
 XHTML documents are also considered XML docs

 As such, the first line of an XHTML file contains a prolog
indicating that the document adheres to the syntax rules
of XML

 Form of the XML prolog:
<?xml version=“value” encoding=“type” ?>

 where the version attribute indicates the XML version of the
document and the encoding attribute specifies the character
encoding

 XHTML documents are written in XML 1.0
 Unless you are using special international characters,

you can usually set the encoding value to UTF-8

Tutorial 9: Working with XHTML page 17 © Jonathan Cazalas

Tutorial 9 Website

 Insert an XML prolog:
 First step is pretty easy

 The XML version is 1.0
 The encoding is UTF-8

 We add this to the HTML file:

Tutorial 9: Working with XHTML page 18 © Jonathan Cazalas

Creating Well-Formed Documents

 Time to follow the rules!
 To make XML documents follow specific rules for

content and structure, they must be evaluated
with an XML parser
 This is a program that checks the document for errors in

syntax and content, and reports the errors it finds
 An XML document with correct syntax is called a

well-formed document
 As mentioned, browsers are forgiving

 They often accept and render documents that violate
HTML syntax as long as the violation isn’t too severe

 However, an XML parser (aka “the Rejecta”) will
reject any XML document that is not well-formed

Tutorial 9: Working with XHTML page 19 © Jonathan Cazalas

Creating Well-Formed Documents

Tutorial 9: Working with XHTML page 20 © Jonathan Cazalas

Creating a Well-Formed Document

 Some rules for well-formed XML
 gotta know “wrong” code from “right” code

Tutorial 9: Working with XHTML page 21 © Jonathan Cazalas

Creating a Well-Formed Document

 Another important rule:
 XHTML documents must also include a single root

element that contains all other elements
 For XHTML, that root element is the html element

 Older Web pages violate a lot of rules!
 Common problem is Attribute minimization

 Occurs when some attributes lack attribute values

 XHTML doesn’t allow attribute minimization
 So you have to be aware of how to correct the

code, making it XHTML compliant

Tutorial 9: Working with XHTML page 22 © Jonathan Cazalas

Attribute minimization in HTML
and XHTML

Tutorial 9: Working with XHTML page 23 © Jonathan Cazalas

Creating a Well-Formed Document

 Attribute Minimization:
 Example:

<input type=“radio” checked>

 In XHTML, this would be rewritten as:
<input type=“radio” checked=“checked” />

 So we added the word “checked” as a value of checked
 And we added the forward slash to properly terminate

the <input> element

 Failure to make these changes will cause the
XHTML document to be rejected as not well-
formed

Tutorial 9: Working with XHTML page 24 © Jonathan Cazalas

Creating Valid XHTML Documents

 XHTML documents must also be valid
 A valid document is one that is well-formed and

one that contains only approved elements,
attributes, and other features of the language

 Example:
 <body>
 <mainhead>Title of Page</mainhead>
 <body>
 This code is well-formed, because it complies with the

syntax rules of XML
 But, it is not valid, because XHTML does not support the

<mainhead> tag

Tutorial 9: Working with XHTML page 25 © Jonathan Cazalas

Creating Valid XHTML Documents

 DTD
 The developers of an XML-based language create

a collection of rules that specify the correct
content and structure for a document

 These rules are collectively called the DTD
 document type definition

 An XML parser tests the content of the document
against the rules of the DTD
 If it doesn’t follow the rules, the parser rejects the

document as not valid

Tutorial 9: Working with XHTML page 26 © Jonathan Cazalas

Creating Valid XHTML Documents

Tutorial 9: Working with XHTML page 27 © Jonathan Cazalas

Creating Valid XHTML Documents

 Transitional, Frameset, and Strict DTDs
 There are many different DTDs associated with

HTML and XHTML documents
 Some represent older versions of HTML in case you

needed to create a document valid only for HTML 2.0
 For most purposes, you’ll focus on three DTDs

that are used with XHTML 1.0
 transitional
 frameset
 strict

Tutorial 9: Working with XHTML page 28 © Jonathan Cazalas

Creating Valid XHTML Documents

 Transitional DTD
 Supports many of the presentational features of

HTML
 including deprecated elements and attributes

 This DTD is best used for older documents that
contain deprecated features

 So if you need support for older browsers, you
should use the transitional DTD

Tutorial 9: Working with XHTML page 29 © Jonathan Cazalas

Creating Valid XHTML Documents

 Frameset DTD
 Used for documents containing frames
 Also supports deprecated elements and attributes

 So if you need to support older browsers, while at

the same time using a framed Web site, you
should use the frameset DTD

Tutorial 9: Working with XHTML page 30 © Jonathan Cazalas

Creating Valid XHTML Documents

 Strict DTD
 Does not allow any presentational features or

deprecated HTML elements and attributes
 Also does not support frames or inline frames
 Best suited for documents that must strictly

conform to the latest standards

 So if you need to support more current browsers
and want to weed out any use of deprecated
features, and if you don’t need to support frames,
you should use the strict DTD

Tutorial 9: Working with XHTML page 31 © Jonathan Cazalas

Creating Valid XHTML Documents

 applet
 basefont
 center
 dir
 font
 frame
 frameset

 iframe
 isindex
 menu
 noframes
 s
 strike
 u

 Elements not allowed under the strict DTD:

Tutorial 9: Working with XHTML page 32 © Jonathan Cazalas

Creating Valid XHTML Documents

 Strict DTD
 The strict DTD also enforces a particular structure

on the document
 Example:

 You cannot place a block level element within an inline
element

 So if you were using the <a> tag to make a link, you
couldn’t use the <p> tag to put a paragraph inside those
<a> tags

Tutorial 9: Working with XHTML page 33 © Jonathan Cazalas

Creating Valid XHTML Documents

Tutorial 9: Working with XHTML page 34 © Jonathan Cazalas

Creating Valid XHTML Documents

 Strict DTD
 Example:

 That code would be rejected because an inline image
was a direct child of the body element

 Corrected code:

<body>

</body>

<body>
 <p></p>
</body>

Tutorial 9: Working with XHTML page 35 © Jonathan Cazalas

Creating Valid XHTML Documents

 All DTDs:
 All three DTDs require the following elements be

present in every valid XHTML document:
 html, head, title, and body

 The html, head, and body elements are usually
expected under HTML

 However, XHTML requires that every document
include the title element as well
 If the title element is missing “the Rejecta” will reject

your document

Tutorial 9: Working with XHTML page 36 © Jonathan Cazalas

Creating Valid XHTML Documents

 The Valid Use of Attributes
 DTDs also include rules for attributes and their

use
 Under the strict DTD, deprecated attributes are

not allowed

 So you must know these elements and their
corresponding attributes…

Tutorial 9: Working with XHTML page 37 © Jonathan Cazalas

Attributes Prohibited in strict DTD

Tutorial 9: Working with XHTML page 38 © Jonathan Cazalas

Creating Valid XHTML Documents

 The Valid Use of Attributes
 Many of these attributes are the so-called

presentational attributes
 The define how the browser should render the elements

 Why do you think they are prohibited?
 Remember the goal we always mention of Web design
 Separate content from structure/appearance
 Presentation/design should all be done in CSS

 The strict DTD enforces this

Tutorial 9: Working with XHTML page 39 © Jonathan Cazalas

Creating Valid XHTML Documents

 The Valid Use of Attributes
 The strict DTD requires the use of the id attribute

in place of the name attribute
 These tags:

 <form name=“order”>

 <map name=“parkmap”>

 Would have to be rewritten in strict XHTML as:

 <form id=“order”>

 <map id=“parkmap”>

Tutorial 9: Working with XHTML page 40 © Jonathan Cazalas

Creating Valid XHTML Documents

 The Valid Use of Attributes
 The strict DTD does not support the target

attribute
 Problem: you cannot open links in secondary browser

windows if you want your code compliant with XHTML

 So clearly some attributes are prohibited
 Also, other attributes are required

 So given an element, in order for the code to be valid
XHTML, that element may require certain attributes

 The following graphic lists required XHTML attributes

Tutorial 9: Working with XHTML page 41 © Jonathan Cazalas

Required XHTML Attributes

Tutorial 9: Working with XHTML page 42 © Jonathan Cazalas

Creating Valid XHTML Documents

 Taking it all in…
 A LOT of rules!

 The list is certainly long and perhaps onerous
 But they reflect good coding practice

 Using the rules helps guarantees a certain level of
quality in the syntax of your Web site
 You won’t have an page without a title
 You won’t have an inline image without alt text
 And if you make a mistake in syntax, using the DTD

enables you to test your document to correct mistakes

Tutorial 9: Working with XHTML page 43 © Jonathan Cazalas

Brief Interlude: FAIL Pics

Tutorial 9: Working with XHTML page 44 © Jonathan Cazalas

Daily UCF Bike Fail

Tutorial 9: Working with XHTML page 45 © Jonathan Cazalas

Creating Valid XHTML Documents

 Inserting the DOCTYPE Declaration
 You need to specify which DTD should be used

by your XHTML document
 To do this, you add a DOCUTYPE declaration

 This tells XML parsers what DTD is associated with the
document and allows the parsers to work accordingly

 Syntax:
 <!DOCTYPE root type “id” “url”>

 where root is the name of the root element of the document
 type identifies the type of the DTD (PUBLIC or SYSTEM)
 id is an id associated with the DTD
 and url is the location of an external file containing the DTD

rules

Tutorial 9: Working with XHTML page 46 © Jonathan Cazalas

Creating Valid XHTML Documents

Tutorial 9: Working with XHTML page 47 © Jonathan Cazalas

Tutorial 9 Website

 Insert a DOCTYPE declaration
 Tom points out that the site has a lot of

deprecated code
 Most of which he’ll fix
 But some of which he may not get to
 So he wants the site to work with the transitional DTD

Tutorial 9: Working with XHTML page 48 © Jonathan Cazalas

Setting the XHTML Namespace

 Adding a namespace declaration
 What is a namespace?
 Remember:

 XHTML is only one of hundreds of languages built on
the foundation of XML

 For example, another XML-based language, MathML, is
sued for documents containing mathematical content,
symbols, equations, etc.

 Example:
 A math professor wants to make a Web site
 He really needs may want some pages using XHTML

and others using MathML (or both)

Tutorial 9: Working with XHTML page 49 © Jonathan Cazalas

Setting the XHTML Namespace

 Adding a namespace declaration
 What is a namespace?

 XML (and through it, XHTML) allows elements and
attributes, from several different XML-based languages,
to be combined within a single document

 So our math professor could combine elements of
XHTML and MathML in one document

 The problem is that you need a way of identifying
which elements go with which language

 This is done by using namespaces

Tutorial 9: Working with XHTML page 50 © Jonathan Cazalas

Setting the XHTML Namespace

 Adding a namespace declaration
 So finally, what is a namespace?

 A namespace is a unique identifier for elements and
attributes originating from a particular document type
(like XHTML or MathML)

 Two types of namespaces:
 default and local (we only focus on default)
 A default namespace is the namespace that is

assumed to be applied to a root element and any
element within it

 This includes, by default, any element within the
document

Tutorial 9: Working with XHTML page 51 © Jonathan Cazalas

Setting the XHTML Namespace

 Adding a namespace declaration
 To declare a namespace, you add the xmlns

(XML namespace) attribute
 <root xmlns=“namespace”>

 to the markup tag for the documents root element
 where root is the name of the root element and

namespace is the namespace id

 Every XML-based language has a namespace id
 For XHTML, you would add the following:
 <html xmlns=“http://www.w3.org/1999/xhtml”>

 this namespace uniquely identifies the doc as XHTML

Tutorial 9: Working with XHTML page 52 © Jonathan Cazalas

Testing under XHTML Transitional

 Time to test our pages!
 In order to confirm that your Web pages follow

standards, you must submit them to an XML
parser

 There are several parsers available on the Web,
with, arguably, the most famous on at the W3C:
 http://validator.w3.org/

 You can either upload files or simply provide a link the

specific page

http://validator.w3.org/�

Tutorial 9: Working with XHTML page 53 © Jonathan Cazalas

Testing under XHTML Transitional

 Errors Reported:
 Note:

 Many errors may end up being reported
 This doesn’t mean that all of them are true errors
 In some cases, one mistake may result in multiple errors

being reported
 And fixing that one mistake can result in several of the

“errors” being resolved

 Suggestion:
 Start with the most obvious errors first, and hopefully it

will help get rid of others in the process

Tutorial 9: Working with XHTML page 54 © Jonathan Cazalas

Testing under XHTML Transitional

 Testing under different DTDs
 Once your page works under the transitional DTD,

it’s a good idea to get it working under strict DTD
 So you must change the DOCTYPE to reflect your

choice of strict DTD:

 And then revalidate!
 Note: expect a lot more errors as well!

Tutorial 9: Working with XHTML page 55 © Jonathan Cazalas

Testing under XHTML Transitional

 Testing under different DTDs
 Once your page works under the transitional DTD,

it’s a good idea to get it working under strict DTD
 So you must change the DOCTYPE to reflect your

choice of strict DTD:

 And then revalidate!
 Note: expect a lot more errors as well!

Tutorial 9: Working with XHTML page 56 © Jonathan Cazalas

Testing under XHTML Transitional

 Passing Validation:
 Once the page has passed validation, you may

want to make note of this on your Web page
 The W3C provides code (a link and a picture) that

you can paste into your document to advertise
that you beat “the Rejecta”

 NOTE:
 This is REQUIRED for the final project to have BOTH

validation icons (for HTML and CSS) and to have those
icons working

Tutorial 9: Working with XHTML page 57 © Jonathan Cazalas

Tutorial 9 Website

 Go through Part 2 of the tutorial and fix Tom’s
site
 Once it is valid, we add the W3C valid icon:

Tutorial 9: Working with XHTML page 58 © Jonathan Cazalas

Tutorial 9 Website – Result

Tutorial 9: Working with XHTML page 59 © Jonathan Cazalas

Tutorial 9: Working with
XHTML

WASN’T
THAT

MONUMENTAL!

Tutorial 9: Working with XHTML page 60 © Jonathan Cazalas

Daily Demotivator

Computer Science Department
University of Central Florida

Tutorial 9:
Working with XHTML

COP 3175 – Internet Applications

	Tutorial 9:�Working with XHTML
	Objectives
	Tutorial 9 Website
	Introducing XHTML
	Introducing XHTML
	Introducing XHTML
	Introducing XHTML
	Introducing XHTML
	Introducing XHTML
	Introducing XHTML
	Introducing XHTML
	Introducing XHTML
	Introducing XHTML
	Introducing XHTML
	Introducing XHTML
	Introducing XHTML
	Tutorial 9 Website
	Creating Well-Formed Documents
	Creating Well-Formed Documents
	Creating a Well-Formed Document
	Creating a Well-Formed Document
	Attribute minimization in HTML and XHTML
	Creating a Well-Formed Document
	Creating Valid XHTML Documents
	Creating Valid XHTML Documents
	Creating Valid XHTML Documents
	Creating Valid XHTML Documents
	Creating Valid XHTML Documents
	Creating Valid XHTML Documents
	Creating Valid XHTML Documents
	Creating Valid XHTML Documents
	Creating Valid XHTML Documents
	Creating Valid XHTML Documents
	Creating Valid XHTML Documents
	Creating Valid XHTML Documents
	Creating Valid XHTML Documents
	Attributes Prohibited in strict DTD
	Creating Valid XHTML Documents
	Creating Valid XHTML Documents
	Creating Valid XHTML Documents
	Required XHTML Attributes
	Creating Valid XHTML Documents
	Brief Interlude: FAIL Pics
	Daily UCF Bike Fail
	Creating Valid XHTML Documents
	Creating Valid XHTML Documents
	Tutorial 9 Website
	Setting the XHTML Namespace
	Setting the XHTML Namespace
	Setting the XHTML Namespace
	Setting the XHTML Namespace
	Testing under XHTML Transitional
	Testing under XHTML Transitional
	Testing under XHTML Transitional
	Testing under XHTML Transitional
	Testing under XHTML Transitional
	Tutorial 9 Website
	Tutorial 9 Website – Result
	Tutorial 9: Working with XHTML
	Daily Demotivator
	Tutorial 9:�Working with XHTML

