
CGS 2545: Database Concepts (Introduction) Page 1 © Dr. Mark Llewellyn

CGS 2545: Database Concepts

Fall 2011

Introduction to Database Systems

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cgs2545/fall2011

CGS 2545: Database Concepts (Introduction) Page 2 © Dr. Mark Llewellyn

• In the most general sense a database is simply a
collection of related data.

– This definition is too vague since we could consider this page of
words to be a database under this definition.

• Note that the “data” in a database can encompass a
wide variety of objects from numbers, text,
graphics, video, audio, etc.

• A more specific definition of a database consists
of certain implicit characteristics which, when
considered together, are assumed to define a
database.

What is a Database?

CGS 2545: Database Concepts (Introduction) Page 3 © Dr. Mark Llewellyn

• A database represents some aspect of the real
world. This abstraction of the real world is often
referred to as the miniworld or the universe of
discourse (UoD).

• A database is a logically coherent collection of
data with some inherent meaning. Random data is
not typically referred to as a database, although
their are exceptions.

• A database is designed, built, populated, and
utilized for some specific purpose. There is a set
of intended users and specific applications in
mind.

What is a Database? (cont.)

CGS 2545: Database Concepts (Introduction) Page 4 © Dr. Mark Llewellyn

• A database is managed by a database management
system (DBMS), typically referred to as a database
system.

• A DBMS is expected to provide significant functionality
including:

1. Allowing users to create new databases. This is done via data
definition languages (DDLs).

2. Allow users to query the database via data manipulation
languages (DMLs).

3. Support the storage of very large amounts of data. Typically
gigabytes or more for very long periods of time. Maintaining its
security and integrity in the process.

4. Control access to data from many users simultaneously.

What is a Database? (cont.)

CGS 2545: Database Concepts (Introduction) Page 5 © Dr. Mark Llewellyn

• The first commercial database systems appeared in the late
1960’s. They evolved from file systems which provide
some of item (3) from the previous slide, however, they
provide little or nothing from item (4).

• Furthermore, file systems do not provide direct support for
the features of item (2), i.e., they don’t support query
languages per se.

• Neither do file systems directly support item (1), their
support for schemas is limited to the creation of directory
structures for files.

• Some of the more important early database systems were
ones where the data was composed of many small items
and many queries or modifications were made. Examples:
airline reservation systems and banking systems.

Early Database Systems

CGS 2545: Database Concepts (Introduction) Page 6 © Dr. Mark Llewellyn

• A famous paper written by Codd in 1970 had the effect of
significantly changing database systems.

• Codd proposed that database systems should present the
user with a view of data organized as tables called
relations. Behind the scenes there might be a complex data
structure that allowed rapid response to queries. But,
unlike the user of the earlier database systems, the user of a
relational system would not be concerned with the storage
structure. Queries could then be expressed in a high-level
language which greatly increased the efficiency of
database programmers.

Database Systems Evolved

Reference:

Codd, E.F., “A relational model for large shared data banks”, Communications of

ACM, 13:6, pp. 377-387.

CGS 2545: Database Concepts (Introduction) Page 7 © Dr. Mark Llewellyn

• Originally, DBMS’s were large, expensive software
systems running on large mainframe computers.

• The size was necessary, because to store a gigabyte of data
required a large computer.

• Today, a gigabyte fits on a single disk, and it is quite
feasible to run a DBMS on a personal computer.

• Relational DBMS based on the relation model are
beginning to appear as a common tool for computer
applications much as spreadsheets and word processors did
before them.

Smaller and Smaller Systems

CGS 2545: Database Concepts (Introduction) Page 8 © Dr. Mark Llewellyn

• On the other hand, a gigabyte isn’t much data. Large
databases contain hundreds of gigabytes (or much more).

• As storage becomes cheaper, people often find new
reasons to store greater amounts of data. Retail chains
often store terabytes (1 terabyte = 1000 gigabytes, or 1012

bytes) information recording the history of every sale over
a long period of time.

• Data other than text and numbers, such as video and audio,
often occupy huge amounts of space per item. An hour of
video occupies about a gigabyte. Databases storing
satellite imagery will hold many petabytes of data (1
petabyte = 1000 terabytes, or 1015 bytes).

Larger and Larger Systems

CGS 2545: Database Concepts (Introduction) Page 9 © Dr. Mark Llewellyn

• Handling such large databases required several

technological advances.

– Modern databases of modest size are stored on arrays of disks

(secondary storage devices).

– Databases almost never operate with the assumption that the “data”

will fit into main memory. Older systems typically only had

secondary storage devices in the form of magnetic tape (linear

technology).

• Two trends allow database systems to deal with larger

amounts of data faster.

Larger and Larger Systems (cont.)

CGS 2545: Database Concepts (Introduction) Page 10 © Dr. Mark Llewellyn

1. Tertiary Storage: The largest databases today
require more than disks. Tertiary devices tend to
store a terabyte each and have longer access
times than do disks.

– Typical disk access times are in the 10-20msec range.
A typical tertiary device may take several seconds.

– Tertiary devices involve transporting the object on
which the data is stored to some reading device via a
robotic conveyance of some sort. It is common to use
CDs as the tertiary medium.

Trends Influencing Larger Databases

CGS 2545: Database Concepts (Introduction) Page 11 © Dr. Mark Llewellyn

2. Parallel Computing: The ability to store enormous
volumes of data is important, but it would be of little use
if we could not access large amounts of that data
quickly. Very large databases require speed enhancers.
Speed enhancement is handled in many different
fashions in modern databases including:

• Indexing structures

• Parallelism – both in terms of CPUs as well as in
terms of the database itself. To some extent,
distributed database systems can also be included as a
speed enhancer, although in a slightly different
manner, as we will see later in the term.

Trends Influencing Larger Databases

CGS 2545: Database Concepts (Introduction) Page 12 © Dr. Mark Llewellyn

Components of a DBMS
users/programmers

application programs/queries

DBMS

Software

software to process queries/programs

software to access stored data

stored database

definition

(meta-data)

stored

database

CGS 2545: Database Concepts (Introduction) Page 13 © Dr. Mark Llewellyn

Architecture of a DBMS
user queries

storage manager

stored database

definition

(meta-data)

stored

database

schema modifications modifications

query processor

transaction

manager

CGS 2545: Database Concepts (Introduction) Page 14 © Dr. Mark Llewellyn

• Stored Database and Meta-data: The stored
database resides on secondary and tertiary devices. (At
any given moment some portion of the database will also
be mirrored in cache, but we will ignore this for the
moment.)

• Meta-data is data about data. In this case the meta-data
is a description of the data components of the database.
Offsets of fields within records. Typing information.
Schema information. Index information and so forth.

• For a given database, a DBMS may maintain many
different indices designed to provide fast access to
random data. Most indices are represented as B-trees in
modern databases. B-trees tend to be short and fat
resulting in fast access from root to leaves.

Overview of DBMS Components

CGS 2545: Database Concepts (Introduction) Page 15 © Dr. Mark Llewellyn

• Storage Manager: In a simple database
system, the storage manager is nothing more
than the file system of the underlying OS. In
larger systems, for the purposes of efficiency,
the DBMS’s normally control storage on the
disk directly.

• The storage manager consists of two basic
components (1) the buffer manager, and (2) the
file manager.

Overview of DBMS Components (cont.)

CGS 2545: Database Concepts (Introduction) Page 16 © Dr. Mark Llewellyn

• File Manager: Keeps track of the location of files on
the disks and obtains the block or blocks containing a
file on request from the buffer manager. Disks are
typically blocked into regions of contiguous space
ranging between 212 and 214 bytes (between roughly
4000 to 16,000 bytes/block).

• Buffer Manager: Handles main memory. IT obtains
blocks of data from the disk, via the file manager, and
chooses a page of main memory in which to store than
block. The paging algorithm will determine how long a
page will remain in main memory. However, the
transaction manager can also force a page in main
memory to be returned to disk (we’ll see the details of
this later in the term as well).

Overview of DBMS Components (cont.)

CGS 2545: Database Concepts (Introduction) Page 17 © Dr. Mark Llewellyn

• Query Manager: Turns a query or database
manipulation, which may be expressed at a very
high level (e.g., SQL) into a sequence of request for
stored data such as specific tuples of a relation or
parts of an index to a relation.

• Often the hardest part of query processing is query
optimization, which involves the formulation of a
good query execution strategy. We’ll deal with
query optimization in much greater detail later in the
semester.

Overview of DBMS Components (cont.)

CGS 2545: Database Concepts (Introduction) Page 18 © Dr. Mark Llewellyn

• Transaction Manager: There are certain guarantees
that a DBMS must make when performing operations
on a database. These guarantees are often referred to
as the ACID properties.

– Atomicity: all of a transaction is executed or none of it is
executed.

– Consistency: data cannot be in a inconsistent state.

– Isolation: concurrent transactions must be isolated from each
other both in effect and in visibility.

– Durability: changes to the database caused by a transaction
must not be lost even if the system fails immediately after the
transaction completes.

Overview of DBMS Components (cont.)

CGS 2545: Database Concepts (Introduction) Page 19 © Dr. Mark Llewellyn

Data vs. Information

In its “raw” form, data has little meaning. In this case it simply

looks like a couple of lists of integer numbers. There is no

context on which to base the data.

Data: 0 11,500

5 12,300

10 12,800

15 10,455

20 12,200

25 13,900

30 14,220

CGS 2545: Database Concepts (Introduction) Page 20 © Dr. Mark Llewellyn

Data vs. Information

By “processing” the data we have transformed it into something

with more meaning. In this example, the processing consisted

primarily of placing the data in context (which is usually done by

adding more data! Although this additional data is really

metadata (see page 14)). Now the data begins to take on more

meaning.

Information: Engine RPM Data: Roebling Road 10/22/2010 – Yamaha Heavy

Lap 12: time rpm

0 11,500

5 12,300

10 12,800

15 10,455

20 12,200

25 13,900

30 14,220

CGS 2545: Database Concepts (Introduction) Page 21 © Dr. Mark Llewellyn

Data vs. Information

Considering the same data as was presented in the previous slide,

consider the following processing of that data.

14,000

13,000

12,000

11,000

rpm/time 0 5 10 15 20 25 30

Graph: Partial Lap 12 – Roebling Road 10/22/2010 – Yamaha Heavy

CGS 2545: Database Concepts (Introduction) Page 22 © Dr. Mark Llewellyn

• Much of the data that appears in a database is there because it is
modeling the characteristics of the enterprise which is represented in the
database.

• For example, considering a database of students at UCF, we might
represent the names, SSN, and major of each student along with a set of
courses that they have taken accompanied by a grade in each of those
courses. Somewhere along the line, someone with proper access to the
database will have entered this data into the database in some fashion,
typically either manually or electronically. If we now assume that this
database also maintains, for each student, their GPA, then where does
this GPA value come from? Is it input in some fashion by some user?
Typically it isn’t, but rather it is calculated by the DBMS (more
specifically probably an application running on top of the DBMS, but
we’ll get to that later). Thus, a student’s GPA value is derived from
other data which is associated with that student. If the data on which
the GPA is derived changes in some fashion, then so too will the
derived value of the GPA.

Derived Data vs. Physical Data

CGS 2545: Database Concepts (Introduction) Page 23 © Dr. Mark Llewellyn

• Depending upon the level of sophistication of the

application layer and/or DBMS, the amount of derived data

which is resident in the database can be much larger than

the amount of “actual data” or “physical data”. Another

reality that surrounds derived data is the question which

concerns when or if it becomes “physical data” since there

is no restriction that derived data ever be actually resident in

the database!

Derived Data vs. Physical Data (cont.)

CGS 2545: Database Concepts (Introduction) Page 24 © Dr. Mark Llewellyn

• For the system to be acceptable to the end-users,
the database design activity is crucial.

• A poorly designed database will generate error
that may lead to bad decisions being made, which
may have serious repercussions for the
organization. On the other hand, a well-designed
database produces, in an efficient way, a system
that provides the correct information for the
decision-making process to succeed.

Database Design

CGS 2545: Database Concepts (Introduction) Page 25 © Dr. Mark Llewellyn

Data and Database Administrators

• The Data Administrator (DA) is responsible for the
management of the data resource including database
planning, development and maintenance of standards,
policies and procedures, and conceptual/logical database
design.

• The Database Administrator (DBA) is responsible for the
physical realization of the database, including physical
database design and implementation, security and integrity
control, maintenance of the operational system, and
ensuring satisfactory performance of the applications for
users. The role of the DBA is more technically oriented
than that of the DA.

Roles in the Database Environment

CGS 2545: Database Concepts (Introduction) Page 26 © Dr. Mark Llewellyn

Database Designers

• In large db design projects, we can distinguish
between two types of designers: logical database
designers and physical database designers.

– Logical database designers are concerned with
identifying the data (the entities and attributes), the
relationships between the data, and the constraints on
the data that will be stored in the database.

– Physical database designers are highly dependent on the
target DBMS, and there may be more than one way of
implementing a mechanism. The physical db designer
must be fully aware of the functionality of the target
DBMS.

Roles in the Database Environment (cont.)

CGS 2545: Database Concepts (Introduction) Page 27 © Dr. Mark Llewellyn

Application Developers

• Once the database has been implemented,

the application programs that provide the

required functionality for the end-users

must be implemented. This is the

responsibility of the application developers.

Roles in the Database Environment (cont.)

CGS 2545: Database Concepts (Introduction) Page 28 © Dr. Mark Llewellyn

End Users

• End users are the “clients” for the database and
can be broadly categorized into two groups based
upon how they utilize the system.

– Naïve users are typically unaware of the DBMS. They
access the database through specially written application
programs which attempt to make the operations as simple as
possible. They typically know nothing about the database or
the DBMS.

– Sophisticated users are familiar with the structure of the
database and the facilities offered by the DBMS. They will
typically use a high-level query language like SQL to
perform their required operations and may even write their
own application programs.

Roles in the Database Environment (cont.)

CGS 2545: Database Concepts (Introduction) Page 29 © Dr. Mark Llewellyn

Advantages of DBMS

control of data redundancy economy of scale

data consistency

more information from same data

amount of data available

sharing of data

improved data integrity

improved data security

enforcement of standards

balance of conflicting requirements

improved data accessibility

increased productivity

improved maintenance

increased concurrency

improved backup and recovery

improved responsiveness

CGS 2545: Database Concepts (Introduction) Page 30 © Dr. Mark Llewellyn

Disadvantages of DBMS

complexity

size

cost of DBMSs

additional hardware costs

cost of conversion

performance (specific cases)

higher impact of failure

CGS 2545: Database Concepts (Introduction) Page 31 © Dr. Mark Llewellyn

Three-Levels of Abstraction in a

Database System

View 1 View 2 View n

user 1 user 2 user n

external level

Conceptual

Schema
conceptual level

internal level

physical data organization

Internal

Schema

db

external to

conceptual

mapping

conceptual to

internal

mapping

CGS 2545: Database Concepts (Introduction) Page 32 © Dr. Mark Llewellyn

• The external level is the user’s view of the database.

• This level describes that part of the database which is
relevant to each user.

• The external level consists of a number of different
external views of the db. Each user has a view of the “real
world” represented in a form that is familiar for that user.

• The external view includes only those entities, attributes,
and relationships in the “real world” that the user is
interested in. Other entities, attributes, and relationships
may exist, but the user will be unaware that they even
exist.

The External Level

CGS 2545: Database Concepts (Introduction) Page 33 © Dr. Mark Llewellyn

• It is often the case that different external views will have

different representations of the same data.

– Example: one view may represent dates in the form of (month,

day, year) while another view may represent dates in the form of

(day, month, year).

• Some views may include derived or calculated data. This

is data that is not actually stored in the database as such,

but created when needed.

– Example: one view may need to see a person’s age. However, this

is probably not a stored value in the db since it would require daily

updates. Rather, it is probably derived from stored data

representing the person’s date of birth and the current date.

The External Level (cont.)

CGS 2545: Database Concepts (Introduction) Page 34 © Dr. Mark Llewellyn

• The conceptual level is the community view of the
database. This level describes what data is stored in the
database and the relationships among the data.

• This is the level at which the logical structure of the entire
database as seen by the DBA is contained. It represents a
complete view of the data requirements of the organization
that is independent of any storage considerations.

• The conceptual level supports each external view, in that
any data available to a user must be contained in, or
derivable from, the conceptual level.

• This level contains no storage-dependent details.

– For example, an entity may be defined as represented by an integer data
type at this level, but the number of bytes it occupies is not specified at
this level.

The Conceptual Level

CGS 2545: Database Concepts (Introduction) Page 35 © Dr. Mark Llewellyn

• The internal level represents the physical representation of
the database on the computer. This level describes how the
data is stored in the database.

• The internal level describes the physical implementation
necessary to achieve optimal runtime performance and
storage space utilization.

• It covers the data structures and file organizations used to
store the data on the storage devices.

• It interfaces with the OS access methods (file management
techniques for storing and retrieving data records) to place
the data on the storage devices, build indexes, retrieve the
data, and so on.

The Internal Level

CGS 2545: Database Concepts (Introduction) Page 36 © Dr. Mark Llewellyn

• Below the internal level is the physical level that may be
managed by the OS under the direction of the DBMS.

• The functions of the DBMS and the OS at the physical
level are not clear cut and will vary from system to system.

• Some DBMSs take advantage of many of the OS access
methods, while others will use only the most basic ones
and create their own file organizations.

• The physical level below the DBMS consists of items only
the OS knows, such as exactly how the sequencing is
implemented and whether the fields of internal records are
stored as contiguous bytes on the disk.

The Physical Level

CGS 2545: Database Concepts (Introduction) Page 37 © Dr. Mark Llewellyn

• The overall description of the database is called the
database schema.

• There are three different types of schema in the database
and these are defined according to the levels of abstraction
of the three-level architecture.

– At the highest level, there are multiple external schema. Also
called subschemas, that correspond to different views of the data.

– At the conceptual level, there is one conceptual schema, which
describes all the entities, attributes, and relationships along with
their integrity constraints.

– At the lowest level of abstraction, there is one internal schema,
which is a complete description of the internal model, containing
the definition of the stored records, methods of representation, etc..

Schemas, Mappings, and Instances

CGS 2545: Database Concepts (Introduction) Page 38 © Dr. Mark Llewellyn

• The DBMS is responsible for mapping between these three
types of schema. It must also check the schemas for
consistency; in other words, the DBMS must check that
each external schema is derivable from the conceptual
schema, and it must use the information in the conceptual
schema to map between each external schema and the
internal schema.

• The conceptual schema is related to the internal schema
through a conceptual/internal mapping. This enables the
DBMS to find the actual record or combination of records
in physical storage that constitute a logical record in the
conceptual schema, together with any constraints to be
enforced on the operations for that logical record.

Schemas, Mappings, and Instances (cont.)

CGS 2545: Database Concepts (Introduction) Page 39 © Dr. Mark Llewellyn

• Each external schema is related to the conceptual schema

by an external/conceptual mapping. This enables the

DBMS to map names in the user’s view on to the relevant

part of the conceptual schema.

Schemas, Mappings, and Instances (cont.)

CGS 2545: Database Concepts (Introduction) Page 40 © Dr. Mark Llewellyn

Schemas, Mappings, and Instances (cont.)

sNo fName lName age salary

external view 1 external view 2

staffNo lName branchNo

conceptual level staffNo fName lName DOB salary branchNo

internal level

struct STAFF

int staffNo;

int branchNo;

char fName[15];

chaf lName[15];

struct data dateofBirth;

float salary;

struct STAFF *next /*ptr to next STAFF record */

};

index staffNo; index branchNo; /*define indices for STAFF */

CGS 2545: Database Concepts (Introduction) Page 41 © Dr. Mark Llewellyn

• One of the major objectives of the three-level architecture

is provide data independence, which means that the upper

levels are unaffected by changes to lower levels.

• There are two types of data independence: logical and

physical.

• Logical data independence refers to the immunity of the

external schemas to changes in the conceptual schema.

• Physical data independence refers to the immunity of the

conceptual schema to changes in the internal schema.

Data Independence

CGS 2545: Database Concepts (Introduction) Page 42 © Dr. Mark Llewellyn

Data Independence (cont.)

View 1 View 2 View n

user 1 user 2 user n

external level

Conceptual

Schema
conceptual level

internal level

physical data organization

Internal

Schema

db

logical data independence

physical data independence

CGS 2545: Database Concepts (Introduction) Page 43 © Dr. Mark Llewellyn

• A data sublanguage consists of two parts: a Data Definition Language
(DDL) and a Data Manipulation Language (DML).

• The DDL is used to specify the database schema and the DML is used
to both read and update the database.

• These languages are called data sublanguages because they do not
include constructs for all computing needs such as conditional or
iterative statements, which are provided by the high-level
programming languages.

• Most DBMSs have a facility for embedding the sublanguage in a high-
level programming language such as COBOL, Pascal, C, C++, Java, or
Visual Basic which is then called the host language.

• Most data sublanguages also provide a non-embedded or interactive
version of the language to be input directly from a terminal.

Database Languages

CGS 2545: Database Concepts (Introduction) Page 44 © Dr. Mark Llewellyn

• A Data Definition Language is a language that allows the

DBA or user to describe and name the entities, attributes,

and relationships required for the application, together with

any associated integrity and security constraints.

• The result of the compilation/execution of the DDL

statements is a set of tables stored in special files

collectively referred to as the system catalog. The system

catalog is also commonly referred to as the data dictionary

or data directory.

The Data Definition Language (DDL)

CGS 2545: Database Concepts (Introduction) Page 45 © Dr. Mark Llewellyn

• A Data Manipulation Language is a language that provides

a set of operations to support the basic data manipulation

operations on the data held in the database.

• DML operations usually include the following:

– insertion of new data into the database.

– modification of data stored in the database.

– retrieval of data contained in the database.

– deletion of data from the database.

• The part of the DML that involves data retrieval is called a

query language.

The Data Manipulation Language (DML)

CGS 2545: Database Concepts (Introduction) Page 46 © Dr. Mark Llewellyn

• DMLs are distinguished by their underlying retrieval constructs. We

can distinguish two basic types of DMLs: procedural and non-

procedural.

• Procedural DMLs are languages in which the user informs the system

what data is required and exactly how to retrieve that data.

• Non-procedural DMLs are languages in which the user informs the

system only of what data is required and leaves the how to retrieve the

data entirely up to the system.

• It is common for procedural DMLs to be embedded in high-level

programming languages.

• Procedural DMLs tend to be more focused on individual records while

non-procedural DMLs tend to operate on sets of records.

DMLs (cont.)

CGS 2545: Database Concepts (Introduction) Page 47 © Dr. Mark Llewellyn

• There is no consensus as to what constitutes a 4GL. In

essences it is a shorthand programming language. What

requires several hundred lines of code in a 3GL will

require only a few lines of code in a 4GL.

• 3GLs are procedural while 4GLs are non-procedural.

• 4GLs include spreadsheets and database languages.

• SQL and QBE are examples of 4GLs.

Fourth Generation Languages

CGS 2545: Database Concepts (Introduction) Page 48 © Dr. Mark Llewellyn

• A data model is an integrated collection of concepts for

describing and manipulating data, relationships between

data, and constraints on the data in an organization.

• A model is a representation of “real world” objects and

events, and their associations. It is an abstraction that

concentrates on the essential, inherent aspects of an

organization and ignores accidental properties.

• A data model must provide the basic concepts and

notations that will allow database designers and end-users

unambiguously and accurately to communicate their

understanding of the organizational data.

Data Models

CGS 2545: Database Concepts (Introduction) Page 49 © Dr. Mark Llewellyn

• A data model can be thought of as comprising
three components:

1. A structural part, consisting of a set of rules
according to which databases can be constructed.

2. A manipulative part, defining the types of operations
that are allowed on the data (this includes operations
that are used for updating or retrieving data from the
database and for changing the structure of the
database).

3. Possibly a set of integrity rules, which ensures that
the data is accurate.

Data Models (cont.)

CGS 2545: Database Concepts (Introduction) Page 50 © Dr. Mark Llewellyn

• Looking at the three level architecture, we can

identify three different, related data models.

1. An external data model to represent each user’s view

of the organization.

2. A conceptual data model to represent the logical (or

community view) that is DBMS independent.

3. An internal data model to represent the conceptual

schema in such a way that it can be understood by the

DBMS.

Data Models (cont.)

CGS 2545: Database Concepts (Introduction) Page 51 © Dr. Mark Llewellyn

• There have been many different data models

which have been theorized, utilized, developed,

and implemented over the years. They fall into

three broad categories: object-based, record-

based, and physical.

• There are three principle record-based models:

the relational data model, the network data

model, and the hierarchical data model. Our

focus will be on the relational data model in this

course.

Data Models (cont.)

