Work for Lab7 on April 19, 2001:

Objectives: To learn the syntax of SQL (structured query language) for queries continuing from the previous lab, and to practice how to translate queries expressed in English into the corresponding SQL statements. Note that Chapter 9 of the Text discusses SQL in detail so it is a good source for references. Also, study the earlier labs 3, 4, and 6 which have discussions on queries and the corresponding SQL statements.

Detailed Steps:

(1) Download the sample database file “lab2DB.mdb” (the same as that used in earlier labs) from the web at http://www.cs.ucf.edu/courses/cgs2545-spr2001/lab/ ; save it on your own floppy or in the c:\temp directory of the PC in the lab. (Download and use the file “lab2DB97.mdb” for the work described here if your home computer uses Access 97 (part of Office 97).)

(2) Start Access under MS Office, then open the downloaded sample database.

(3) We first create a simple query in order to learn how this query is expressed in the SQL syntax. Click “Queries” under the Object column for the opened database; click on “New” on the menu bar, then choose “Design View”. Choose the single table lab2OrderDetails and add it into the query window. Close the “Show Table” window.

(4) Select orderID and prouctID from the lab2OrderDetails table. Save this query as lab7Q1, then close the query.

(5) Run query lab7Q1 (i.e., open it). You see the results of this query consisting of 32 records. Choose “SQL View” under the “view” option on the MS menu bar. An SQL View window opens up, which shows the following SQL statement:

SELECT lab2OrderDetails.orderID, lab2OrderDetails.productID

FROM lab2OrderDetails;

Note the SELECT clause which specifies the list of the fields or columns form the chosen table(s); the FROM clause specifies the tables from which the fields are selected. In general, there is also a WHERE clause which specifies the criteria or conditions on the fields which the selected records must satisfy. When there is only one table, the field names after SELECT can be simplified without the table name prefixes, i.e., the following SQL works just the same:

SELECT orderID, productID

FROM lab2OrderDetails;

In English, this query may be phrased as “find all OrderID and the productID of the orders in the lab2OrderDetails table”. We now consider a sequence of query examples as follows:

(6) Example 1 (Expressions): Find the total cost for each combination of orderID and productID (in the lab2OrderDetails table):

SELECT orderID, productID, unitPrice*quantity AS totalCost

FROM lab2OrderDetails;

Notice the use of an arithmetic expression unitPrice*quantity, which takes the unit price times the quantity for each order, in order to get the order’s total cost. You also notice the AS clause immediately after the expression, which name the heading (or title) of the column on the query output. Thus, when running the query you will see the following output:

orderID productID totalCost

10248

11 $168.00

10248

42 $98.00

(etc.)

You could generate this SQL using the query window of Access, by first selecting the fields orderID and productID into a query window. Right-click on the field cell in the third column, then choose “Build”, which brings up an Expression Builder. You can now double-click on the Table icon inside the lower-left area to select the table lab2OrderDetails (double-click on this table). Now you see the fields of the selected table, choose unitPrice by double-clicking on it, then single-click on the “*” operator (multiply) in the bar of the middle section, then double-click the quantity field. Choose OK to return to the query window. On the MS Access menu bar, choose SQL view under View, you should see am SQL statement similar to the one given above. You can edit (modify) the SQL syntax in the SQL window, for example, change the name after the AS clause, etc. You can return from the SQL view to the query window view by choosing the Design View under the View option. Save this as query lab7Q2.

(7) Example 2 (Wildcard character *): Find all fields of the lab2OrderDetails table.

This can be done by the following query using the wildcard character * to mean everything:

SELECT *

FROM lab2OrderDetails;

(Note that this SQL can also be generated using the Access query window by first selecting the table, then inside the first column of the query window choose lab2OrderDetails.*.)

(8) Example 3 (Aggregate functions COUNT, AVG, SUM, MAX, MIN):

Find the total number of records (rows) in the lab2OrderDetails table.

SELECT COUNT(*) AS totalCount

FROM lab2OrderDetails;

Find the largest quantity of orders for all the combinations of orderID and productID in the lab2OrderDetails table:

SELECT MAX(quantity) AS maxQuantity

FROM lab2OrderDetails;

Find the orderID and the number of productIDs for each orderID (from the lab2OrderDetails table):

SELECT orderID, COUNT(productID) AS countOfProductIDs

FROM lab2OrderDetails

GROUP BY orderID;

(Note that these SQLs can be generated using the query design window of Access; alternatively, you can choose the table lab2OrderDetails during a query design, then go to the SQL View and type in the SQL statement directly and save the query.)

(9) Example 4 (Criteria for selecting records using the WHERE clause):

Find the orderID, productID, and the unitPrice where the unitPrice is > $20.00:

SELECT orderID, productID, unitPrice

FROM lab2OrderDetails

WHERE unitPrice > 20;

Again, this can be done by using the Access query design window, or by typing in the SQL statement into the SQL View window. To do it using the Access query window, enter as the criteria “> 20” under the column of unitPrice (without using the quotation marks). Save this query as lab7Q3.

(10) Example 5 (Use of logical operators AND, OR, and NOT for criteria):

Find orderID, productID, and the unitPrice where either the unitPrice is > $20.00 or productID is between 50 and 60 (including 50 and 60):

SELECT orderID, productID, unitPrice

FROM lab2OrderDetails

WHERE (productID <= 60 AND productID >= 50) OR unitPrice > 20;

This can be done using the Access query window by entering as the criteria “<= 60 AND >= 50” under the productID column, and entering as the OR criteria (one row below Criteria) “>20” under the unitPrice column. Save this query as lab7Q4.

(11) Example 6 (Use of SELECT DISTINCT to drop duplicate field values):

Find all products in the lab2OrdserDetails table by showing productIDs without duplication:

SELECT DISTINCT productID

FROM lab2OrderDetails;]

Note the use of the keyword DISTINCT after SELECT; this can be done by first creating the query then editing the SQL statement by adding the word DISTINCT. Save the query as lab7Q5.

(12) Example 7 (Use of ORDER BY for sorting the rows):

Find all unitPrices and productIDs in the lab2OrderDetails table, in descending order of the unitPrices:

SELECT DISTINCT unitPrice, productID

FROM lab2OrderDetails

ORDER BY unitPrice DESC;

Note the keywords ORDER BY and DESC (which stands for Descending), and the word DISTINCT to drop duplicated rows. The query can be designed using the Access query window by selecting the fields unitPrice and productID, choose Descending for Sort under the unitPrice column. Then open the SQL View and add the keyword DISTINCT. Save the query as lab7Q6.

(13) Example 8 (Join multiple tables):

Find the companyName, orderID, and orderDate from the two tables lab2Customers and lab2Orders:

SELECT companyName, orderID, orderDate

FROM lab2Customers INNER JOIN lab2Orders ON lab2Customers.customerID = lab2Orders.customerID;

The query can be constructed easily using the Access query design window, by first choosing the two tables, then choosing the 3 fields from the appropriate tables. When opening the SQL View window, we notice the “INNER JOIN” part of the SQL syntax, which is added by Access to show the relationship between the two tables. Basically, its purpose is to specify the matching fields of the selected tables. We also notice the use of table name in specifying the fields that have identical names in two different tables, i.e., fieldslab2Customers.customerID and lab2Orders.customerID. Save the query as lab7Q7.

 (14). Example 9 (Join tables using LEFT JOIN or RIGHT JOIN):

In query lab7Q7, the query results show only those records (rows) from the two tables that have matching customerID fields, i.e., the same customer. If a customer who has no matching order (e.g. the customer with compnayName Frankenversand), that customer will not show in the query results. However, we can easily modify the query if we want to show all customers (i.e., the companyName field of the customer) regardless whether they have a matching order. This can be done by changing the keywords INNER JOIN to LEFT JOIN. The query becomes:

SELECT companyName, orderID, orderDate

FROM lab2Customers LEFT JOIN lab2Orders ON lab2Customers.customerID = lab2Orders.customerID;

Save this query as lab7Q8 and run it. Similarly, we can use the keywords RIGHT JOIN if we want to show all orderID and orderDate regardless whether there is a matching customer. It turns out since every order must have a corresponding customer, the results of using RIGHT JOIN are the same as that of using INNER JOIN.

Note: Be sure you know the mechanics of using Access for the lab work, and understand how and what the system does based on your selections. In addition, learn how to translate queries expressed in English into the corresponding SQL statements.

