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Chapter 1

Processing texts efficiently

The present report describes few standard algorithms used for processing texts. They apply for example
to the manipulation of texts (word editors), to the storage of textual data (text compression), and to data

retrieval systems. The algorithms of the report are interesting in different aspects. First, they are basic

components used in the implementations of practical softwares. Second, they introduce programming

methods that serve as paradigms in other fields of computer science (system or software design). Third,
they play an important role in theoretical computer science by providing challenging problems.

Although data are memorized in various ways, text remains the main form to exchange information.
This is particularly evident in litterature or linguistics where data are composed of huge corpus and
dictionaries. This apply as well to computer science where a large amount of data are stored in linear
files. And this is also the case, for instance, in molecular biology because biological molecules can
often be approximated as sequences of nucleotides or aminoacids. Moreover the quantity of available
data in these fields tend to double every eighteen months. This is the reason why algorithms should be
efficient even if the speed of computers increases regularly.

Pattern matching is the problem of locating a specific pattern inside raw data. The pattern is usually
a collection of strings described in some formal language. Two kinds of textual patterns are presented:
single strings and approximated strings. We present two algorithms for matching patterns in images
that are extensions of string-matching algorithms.

In several applications, texts need to be structured before searched. Even if no further information
is known on their syntactic structure, itis possible and indeed extremely efficient to built a data structure
that supports searches. Among several existing data structures equivalent to indexes, we present the
suffix tree with its construction.

The comparison of strings is implicit in the approximate pattern searching problem. Since it is
sometimes required just to compare two strings (files, or molecular sequences) we introduce the basic
method based on longest common subsequences.

Finally, the report contains two classical text compression algorithms. Variants of these algorihms
are implemented in practical compression softwares, in which they are often combined together or with
other elementary methods.

The efficiency of algorithms is evaluated by their running time, and sometimes also by the amount
of memory space they require at run time.



Chapter 2

String-matching algorithms

String matching consists in finding one, or more generally, allodoerrences of a pattern in a text.

The pattern and the text are both strings built over a finite alphabet (finite set of symbols). All the
algorithms in this section output all occurrences of the pattern in the text. The pattern is denoted by
x = 2[0...m — 1]; its length is equal ten. The text is denoted by = y[0...n — 1]; its length is

equal torn. The alphabet is denoted Byand its size is equal te.

String-matching algorithms of the present section work as follows: they first align the left ends
of the pattern and the text, then compare the characters of the text aligned with the characters of the
pattern — this specific work is called an attempt — and after a whole match of the pattern or after a
mismatch they shift the pattern to the right. They repeat the same procedure again until the right end of
the pattern goes beyond the right end of the text. We associate each attempt with the posttien
text when the pattern is aligned wigfu . . .7 + m — 1].

The brute force algorithm consists in checking, at all positions in the text between® -and,
whether an occurrence of the pattern starts there or not. Then, after each attempt, it shifts the pattern
exactly one position to the right. The brute force algorithm is given Figure 2.1.

The time complexity of the brute force algorithm@gmn) in the worst case but its behaviour in
practice is often linear on specific data.

2.1 Karp-Rabin algorithm

Hashing provides a simple method to avoid a quadratic number of symbol comparisons in most practical
situations. Instead of checking at each position of the text if the pattern occurs, it seems to be more
efficient to check only if the portion of the text aligned with the pattern “looks like” the pattern. In
order to check the ressemblance between these portions a hashing function is used. To be helpful for
the string-matching problem the hashing function should have the following properties:

o efficiently computable,

¢ highly discriminating for strings,

o hash(y[i+ 1...7+ m]) must be easily computable frobash(y[i...: + m — 1]):

hash(yli + 1...i 4+ m]) = rehash(y[i], y[i + m], hash(y[i...i + m — 1]).

For a wordw of lengthm let hash(w) be defined as follows:

hash(w[0...m — 1]) = (w[0] * 2"~ + w[1] * 2" "2 4 ... 4+ w[m — 1]) modq



voi d BF(char *y, char *x, int n, int n
{

int i;

/* Searching */
i =0;
while (i <= n-nm {
j =0;
while (j <m& y[i+] == x[j]) j++
if (j > m OUTPUT(i);
i ++; /* shift one position to the right */

Figure 2.1: The brute force string-matching algorithm.

whereg is a large number. Then,
rehash(a,b,h) = ((h —a* 2™~ 1)« 2+ b) modg.

During the search for the pattetnit is enough to comparkash(z) with hash(y[i ...t + m — 1]) for
0 < i < n—m. If an equality is found, it is still necessary to check the equality y[i .. .: + m — 1]
symbol by symbol.

In the algorithm of Figure 2.2 all the multiplications by 2 are implemented by shifts. Furthermore,
the computation of the modulus function is avoided by using the implicit modular arithmetic given by
the hardware that forgets carries in integer operations.q $chosen as the maximum value of an
integer.

The worst-case time complexity of the Karp-Rabin algorithm is quadratic in the worst case (as it is
for the brute force algorithm) but its expected running timé@{s: + »).

Example 2.1:

Letz = ing.

Thenhash(z) = 105+ 22 4+ 110+ 2 + 103 = 743 (values computed with the ASCII codes).
y='s t r i n ¢ m a t ¢ h i n ¢

hash = 806 797 776 743 678 585 443 74819 766 709 736 743

2.2 Knuth-Morris-Pratt algorithm

We present the first discovered linear-time string-matching algorithm. Its design follows a tight analysis
of the brute force algorithm, and especially on the way this latter algorithm wastes the information
gathered during the scan of the text.

Let us look more closely at the brute force algorithm. It is possible to improve the length of shifts
and simultaneously remember some portions of the text that match the pattern. This saves comparisons
between characters of the text and characters of the pattern and consequently increases the speed of the
search.



#define REHASH(a, b, h) (((h-a*d)<<1)+b)

voi d KR(char *y, char *x, int n, int n

{

int hy, hx, d, i;

/* Preprocessing */

d=1;

for (i=1;, i <m i++) d=(d<<l1);
hy=hx=0;

for (i=0; i <m i++) {
hx=((hx<<1l) +x[i]);
} hy=((hy<<1)+y[i]);

/* Searching */

i =

while (i < n) {
if (hy == hx & strncnp(y+i-m x, m == 0) OUTPUT(i-n);
hy=REHASH(y[i-m, y[i], hy);
i+

Figure 2.2: The Karp-Rabin string-matching algorithm.

Consider an attempt at positiorthat is when the patter]0. . . m — 1] is aligned with the window
y[i...i + m — 1] on the text. Assume that the first mismatch occurs betwgen j] and[;] with
1<j<m Thenyli...i+j—1 = z[0...7 — 1] = wanda = y[i + j] # z[j] = b. When
shifting, it is reasonnable to expect thaprafix v of the pattern match sonsaffix of the portionu of
the text. Moreover, if we want to avoid another immediate mismatch, the letter following the prefix
in the pattern must be different frobn The longest such prefixis called theborder of u (it occurs
at both ends of:). This introduces the notation: letext[;j] be the length of the longest border of
x[0...5 — 1] followed by a character different fromy[j]. Then, after a shift, the comparisons can
resume between charactefs + j] andxz[j — next[j]] without missing any occurrence ofin y, and
avoiding a backtrack on the text (see Figure 2.3).

i 1+
y L v |d
#
z | u [ 0]
#
z Lo [ |

Figure 2.3: Shift in the Knuth-Morris-Pratt algorithm guffix of ).



voi d KMP(char *y, char *x, int n, int m

{
int i, j, next[XSlZE];

/* Preprocessing */
PRE_KMP(x, m next);

/* Searching */

i =j =0;

while (i <n) {
while (j >-1 && x[]j] !'=y[i]) j=next[j];
i+ ]+
if (j > m { QUTPUT(i-j); j=next[ni; }

Figure 2.4: The Knuth-Morris-Pratt string-matching algorithm.

voi d PRE_KWMP(char *x, int m int next[])
{

int i, j;

i =0; j=next[0]=-1,;
while (i <m {
while (j >-1 && x[i] !'=x[j]) j=next[j];
i+ ]+
if (x[i1] == x[]j]) next[i]=next[j];
el se next[i]=];

Figure 2.5: Preprocessing phase of the Knuth-Morris-Pratt algorithm: compsixtg.

Example 2.2:

Y= a b a b a a .

v = a b ab ab a

x = a b a b a b a

Compared symbols are underlined. Note that the bordababa is aba.

The Knuth-Morris-Pratt algorithm is displayed in Figure 2.4. The table it uses can be computed
in O(m) time before the search phase, applying the same searching algorithm to the pattern itself, as
if y = 2 (see Figure 2.5). The worst-case running time of the algorithfi(is + ») and it requires
O(m) extra-space. These quantity are independent of the size of the underlying alphabet.

2.3 Boyer-Moorealgorithm

The Boyer-Moore algorithm is considered as the most efficient string-matching algorithm in usual
applications. A simplified version of it or the entire algorithm is often implemented in text editor for

9



7 shift

x | b | U |<—>
#

z L[] u | |

Figure 2.6: good-suffix shift; reappears preceded by a character different from

y o | u |
7 shift
@ [ ] u |
z [ o ] |

Figure 2.7: good-suffix shift, only a prefix afreappears in.

the “search” and “substitute” commands.

The algorithm scans the characters of the pattern from right to left beginning with the rightmost
symbol. In case of a mismatch (or a complete match of the whole pattern) it uses two precomputed
functions to shift the pattern to the right. These two shift functions are callefdatiecharacter shift
and thegood-suffix shift

Assume that a mismatch occurs between the charagfér= b of the pattern and the character
y[i+7] = aofthetextduring an attemptat positioiTheny[i+j+1...i+m—-1] = z[j+1...m-1] =
wandy[i+ j] # x[j]. The good-suffix shift consistsin aligning teement y[i +j+1...i+m—1] =
z[j 4+ 1...m — 1] with its rightmost occurrence inthat is preceded by a character different frepy]

(see Figure 2.6). If there exists no such segment, the shift consists in aligning the longest stiffix
y[i+ 74 1...i+ m — 1] with a matching prefix of (see Figure 2.7).

Example 2.3:
y= . . . a b b a a b b a b b a
xr=— a b b a a b b a b b a
v = a b b aabbabba
The shift is driven by the suffiabba of » found in the text. After the shift, the segmeatiiba of y
y ] u |
shift
T | b | U |<—>
x | [a] contains na |

Figure 2.8: bad-character shiitappears irn.

10



y [ | g |

7 shift
@ [ ] u |

@ | contains na |

Figure 2.9: bad-character shiftdoes not appear in.

matches a segment of The same mismatch does not recur.

Example 2.4

y= . . . a b b a a b b a b b a b b a
x = b b ab b ab b a

T = b b ab b ab b a
The segmenébba found iny partially matches a prefix of after the shift.

The bad-character shift consists in aligning the text charagg¢ter 7] with its rightmost occurrence
in 2[0...m — 2] (see Figure 2.8). Ifj[i + j] does not appear in the patternno occurrence of in
y can includey[: 4+ j], and the left end of the pattern is aligned with the character immediately after
y[t + 7], namelyy[i + j + 1] (see Figure 2.9).

Example 2.5:

y= . . . . . . a b c d

xr= ¢ d a h g f e b ¢ d

x = c d a h gf e b c d

The shift aligns the symbal in 2 with the mismatch symba in the text.
Example 2.6:

y:

0 ©
o a

c
[

d h g f e b c d

xr= ¢ d h g f
T =
The shift positions the left end afright after the symba of y.

O | o

The Boyer-Moore algorithmis shown in Figure 2.10. For shifting the pattern, it applies the maximum
between the bad-character shift and the good-suffix shift. More formally the two shift functions are
defined as follows. The bad-character shift is stored in a tabté sizes and the good-suffix shift is
stored in a tablegs of sizem + 1. Fora € Z:

be[a] = min{j /1< j < mandz[m—1-j]=a} Ifaappearsin,
Y=Y m otherwise.

Let us define two conditions:

condy(j,s): foreachk suchthay < k < m,s > korzlk — s] = z[k]
condy(j,s): if s < jthenz[j — s] # z[j]

Then, for 0< 7 < m:

gs[t+ 1] = min{s > 0/ condi(t, s) andcondy(t, s) hold}

11



void BM char *y, char *x, int n, int n

{
int i, j, gs[XSlIZE], bc[ASIZE];

/* Preprocessing */
PRE GS5(x, m gs);
PRE BC(x, m bc);

/* Searching */
i =0;
while (i <= n-n {
j=m1;
while (j >= 0 && x[j] == y[i+]) j--;
if (j <0) OUTPUT(i);
i +=MAX(gs[j +1], bc[y[i+j]]-mtj +1); [* shift */

Figure 2.10: The Boyer-Moore string-matching algorithm.

voi d PRE_BC(char *x, int m int bc[])
{

int j;
for (j=0; j < ASIZE; j++) bc[j]=m

for (j=0; j <m1; j++) be[x[j]]=mj-1;
}

Figure 2.11: Computation of the bad-character shift.

and we defing s[0] as the length of the smallest periodaof

Tablesbc et gs can be precomputed in tim@(m + o) before the search phase and require an
extra-space it (m + o) (see Figures 2.12 and 2.11). The worst-case running time of the algorithm
is quadratic. However, on large alphabets (relatively to the length of the pattern) the algorithm is
extremely fast. Slight modifications of the strategy yield linear-time algorithms (see the bibliographic
notes). When searching fef” 1 in «” the algorithm makes onl@)(n/m) comparisons, which
is the absolute minimum for any string-matching algorithm in the model where the pattern only is
preprocessed.

2.4 Quick Search algorithm

The bad-character shift used in the Boyer-Moore algorithm is not very efficient for small alphabets, but
when the alphabet is large compared with the length of the pattern, as it is often the case with the ASCII
table and ordinary searches made under a text editor, it becomes very useful. Using it alone produces a
very efficient algorithm in practice.

After an attempt where is aligned withy[: . . .< + m — 1], the length of the shiftis at least equal to
one. So, the charactgfi + m] is necessarily involved in the next attempt, and thus can be used for the

12



voi d PRE_GS(char *x, int m int gs[])

{

int i, j, p, f[XSlZzZg;

for (i=0; i <=nm i++) gs[i]=0;
flm =) =m1;

for (i=m i >0; i--) {

while (j <= m&& x[i-1] !'= x[j-1]) {
if (tgs[jl) oslil=j-i;
j=ftlil;
}
fli-1]=-j;
}
p=f[0O];
for (j=0; j <=m j++) {
if (tgs[jl) osli]l=p;
if (j ==p) p=flpl;

Figure 2.12: Computation of the good-suffix shift.

bad-character shift of the current attempt. The bad-character shift of the present algorithm is slightly
modified to take into account the last symbokadis follows ¢ € %):

bela] = min{j /0< j < mandz[m —1- j] =a} if aappearsin,
Y=Y m otherwise.

The comparisons between text and pattern characters during each attempt can be done in any order. The
algorithm of Figure 2.13 performs the comparisons from left to right. The algorithm is called Quick
Search after his inventor. It has a quadratic worst-case time complexity but a good practical behaviour.

Example 2.7:

y= s t r i n g - mat c h i n g
r= 1 n ¢

r = i ng

z = B i n g

T

= i n g
r = i ng
Quick Search algorithm makes 9 comparisons to find the two occurrenéasgoinside the text of
length 15.

2.5 Experimental results

In Figures 2.14 and 2.15 we present the running times of three string-matching algorithms: the Boyer-
Moore algorithm (BM), the Quick Search algorithm (QS), and the Reverse-Factor algorithm (RF). The
Reverse-Factor algorithm can be viewed as a variation of the Boyer-Moore algorithm where factors
(segments) rather than suffixes of the pattern are recognized. RF algorithm uses a data structure to store
all the factors of the reversed pattern: a suffix automatonsoffex tree (see Chapter 4).

13



void QS(char *y, char *x, int n, int n

{
int i, j, bc[ASIZE];

/* Preprocessing */
for (j=0; j < ASIZE;, j++) bc[]j]=m
for (j=0; j <m j++) be[x[j]]=mj-1;

/* Searching */
i =0;
while (i <= n-nm {
i =0
while (j <m&& x[j] == y[i+]) j++
if (j >= m OUTPUT(i);
i +=bc[y[i+m]+1; /* shift */

Figure 2.13: The Quick Search string-matching algorithm.

Tests have been performed on various types of texts. In Figure 2.14 we show the result when the
text is a DNA sequence on the four-letter alphabet of nucleofides, G, T}. In Figure 2.15 english
text is considered.

For each pattern length, we ran a large number of searches with random patterns. The average time
according to the length is shown is the two Figures. Both, preprocessing and searching phases running
times are totalized. The three algorithms are implemented in a homogeneous way in order to keep the
comparison significant.

For the genome, as expected, QS algorithm is the best for short patterns. But for long patterns it is
less efficient than BM algorithm. In this latter case RF algorithm achieves the best results. For rather
large alphabets, as it is the case for an english text, QS algorithm remains better than BM algorithm
whatever the pattern length is. In this case the three algorithms perform slightly alike; QS is better for
short patterns (which is the typical search under a text editor) and RF is better for large patterns.

2.6 Aho-Corasick algorithm

The UNIX operating provides standard texts (or files) facilities. Among them is the serggsepf
command that locate patterns in files. We describe in this section the algorithm underlyiryy e
command of UNIX. It searches files for a finite set of strings and can for instance outputs lines containing
at least one of the strings.

If we are interested in searching for all the occurrences of all patterns taken from a finite set of
patterns, a first solution consists in repeating some string-matching algorithm for each pattern. If the
set containg: patterns, this search runs in tini&kn). Aho and Corasick designed @n(nlogo)
algorithm to solve this problem. The running time is independent of the number of patterns. The
algorithm is a direct extension of the Knuth-Morris-Pratt algorithm.

Let X = {x1,22,...,21} be the set of patterns, and let| = |z1| + |22| + - - - + |2x| be the
total size of the sek’. The Aho-Corasick algorithm first consists in buildingrée 7'( X ), digital tree
recognizing the patterns df. The trie7'(X') is a tree which edges are labelled by letters and which

14
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Figure 2.14: Running times for a DNA sequence.

branches spell the patterns®f We identify a node in the trie’7’( X' ) with the unique wordv spelled
by the path off'(X') from its root top. The root itself is identified with the empty worel: Notice that
if wis a node ifl'(X ) thenw is a prefix of some; € X.

The functionPRE_AC in Figure 2.16 returns the trie of all patterns. During the second phase where
pattern are entered in the trie the algorithm initializes an output funatianit associates the singleton
{z;} with the nodes:; (1 < ¢ < k), and associates the empty set with all other nodes(df ) (see
Figure 2.17).

The last phase of functidPRE_AC (Figure 2.16) consists in building the failure link of each node of
the trie, and simultaneously completing the output function. This is done by the fuR@IdPLETE
in Figure 2.18. The failure functiofi is defined on nodes as follows (s a node):

f(w) = uwwhereu is the longest proper suffix af that belongs td’( X ).

Computation of failure links is done using a breadth-first search(df ). Completion of the output
function is done while computing the failure functigrin the following way:

if f(w) = uthenout(w) = out(w) U out(u).

In order to stop going back with failure links during the computation of the failure links, and also in
order to pass text characters for which no transition is defined from the root, it is necessary to add a
loop on the root of the trie for these characters. This is done by the first phase of fUPIREOAC.

After the preprocessing phase is completed, the searching phase consistsin parsing all the characters
of the texty with 7'( X'). This starts at the root df( X ) and uses failure links whenever a charactey of
does not match any label of edges outgoing the current node. Each time a node with a non-empty value
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Figure 2.15: Running times for an english text.

NODE PRE_AC(char X[ KSI ZE] [ XSI ZE], int k)
{

NODE root; int i, c;

r oot =ALLOCATE_NCDE( ) ;

/* creates |oops on the root of the trie */
for (c=0; ¢ < ASIZE, c++) PUT_EDGE(root, c, root);

/* enters each pattern in the trie */
for (i=0; i < k; ++i) ENTER(X[i], root);

/* conmpletes the trie with failure Iinks */
COVPLETE(root);

return(root);

Figure 2.16: Preprocessing phase of the Aho-Corasick algorithm.
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voi d ENTER(char *x, NODE root)
{

int m i;

NODE r, s;

nestrilen(x);
r=root; i=0;

/* follows the existing edges */
while (i < m&& (s=GET_NODE(r, x[i])) !'= UNDEFINED & s !'=r1) {
r=s; i++

}

/* creates new edges */

while (i <m {
s=ALLOCATE_NODE() ;
PUT_EDGE(r, x[i], s);
r=s; i++

}

PUT_QUTPUT(r, X);
}

Figure 2.17: Construction of the trie.

for the output function is encountered, this means that the patterns contained in the output function of
this node have been discovered in the text, ending at the current position. The position is then output.
The Aho-Corasick algorithm implementing the previous discussion is shown in Figure 2.19. Note
that the algorithm processes the text in an on-line way, so that the buffer on the text can be limited to
only one symbol. Also note that the instructionGET _FAI L(r) in Figure 2.19 is the exact analogue
of instructionj =next [j ] in Figure 2.4. A unified view of both algorithms exist but is out of the
scope of the report.
The entire algorithm runs in tim@(|.X | + ») if the GET_NODE function is implemented to run in
constant time. This is the case for any fixed alphabet. Otherwiseanuogtiplicative factor comes
from the execution o5ET_NCDE.
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voi d COVPLETE( NODE r oot)
{

QUEUE q;

LIST I;

NODE p, r, s, u;

char c;

q=EMPTY_QUEUE() ;
| =GET_SONS(r oot ) ;

while (!'LIST_EMPTY(l)) {
r=FI RST_N(1); /* r is a son of the root */
[ =NEXT(1);
ENQUEUE(q, r);
PUT_FAI L(r, root);
}

whil e (! QUEUE_EMPTY(q)) {

r =DEQUEUE( ) ;

| =GET_SONS(r) ;

while (!LIST_EMPTY(I)) {
p=FI RST_N(1);
c=FIRST_L(I); [/* (r,p) is a edge labelled with ¢ */
[ =NEXT(1);
ENQUEUE(q, p);
S=CGET_FAI L(r);
while ((u=GET_NODE(s, c)) == UNDEFI NED) s=GET_FAIL(S);
PUT_FAIL(p, u);
ADD QUTPUT(p, u);

Figure 2.18: Completion of the ouput function and construction of failure links.
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Example 2.8:
X = {search, ear, arch, chart}

c ¢ {s,e,a,c}

(¢
Q
(%)
D
Q
—
(@)
=y

J> )
O

nodes|| ¢ se sea | sear | searc | search e ea ear
fail €| € e ea ear arc arch € a ar
nodes||a | ar | arc | arch c ch cha char | chart
fail || ¢ | ¢ c ch € € a ar €

nodes|| sear sear ch ear arch chart

out || {ear} | {search,arch} | {ear} | {arch} | {chart}

int AC(char *y, char X[ KSIZE][XSIZE], int n, int k)

{
NCDE r, s;
int i;

/* Preprocessing */
r=PRE_AC( X, k);

/* Searching */

for (i=0; i < n; ++i) {
while ((s=GET_NCDE(r, y[i])) == UNDEFINED) r=CGET_FAIL(r);
r=s;
QUTPUT(r, i);

}

}

Figure 2.19: The Aho-Corasick algorithm.
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Chapter 3

Two-dimensional pattern matching
algorithms

In this section only we consider two-dimensional arrays. Arrays may be thought as bitmap representa-
tions of images, where each cell of the arrays contains the codeword of a pixel. The string-matching
problem finds an equivalent formulation in two dimensions (and even in any number of dimensions),
and algorithms of Chapter 2 extends to arrays.

The problem is now to find all occurrences of a two-dimensional pattera z[0...m; —
1,0...my — 1] of sizemj x my inside a two-dimensional text = [0...n1 — 1,0...n2 — 1] of
sizeny X ny. The brute force algorithm for this problem is given in Figure 3.1. It consists in checking
at all positions ofy[0...n1 — m1,0...no — my] if the pattern occurs. The brute force algorithm has
a quadratic (with respect to the size of the problem) worst-case time complextyninmaning).
We present in the next sections two more efficient algorithms. The first one is an extension of the
Karp-Rabin algorithm (Section 2.1). The second solves the problem in linear-time on a fixed alphabet;
it uses both the Aho-Corasick and the Knuth-Morris-Pratt algorithms.

3.1 Zhu-Takaoka algorithm

As for one-dimensional string matching, it is possible to check if the pattern occurs in the text only if
the “aligned” portion of the text “looks like” the pattern. The idea is to use the hash function method
proposed by Karp and Rabin vertically. First, the two-dimensionnal arrays of characterdy, are
translated into one-dimensional arrays of numbersndy’. The translation fromx to 2’ is done as
follows (0 < ¢ < my):

2'[i] = hash(z[0, i]z[1,¢]...2x[my — 1,1])

and the translation fromto ¢’ is done by (0< i < my):
y'[i] = hash(y[0,i]y[1,7]...y[m1 — 1,4]).

The fingerprinty’ helps to find occurrences ofstarting at rowj = 0 in y. It is then updated for each
new row in the following way (&< ¢ < my):

ha‘gh(y[]—l'lv Z]y[]—l'zv Z] s y[j+m17 Z]) = TehaSh(y[jv Z]v @/[j‘|‘m17 Z]? haSh(y[jv Z]y[]—l'lv Z] .- 'y[j+ml_17 Z]))

(functionshash andrehash are used in the Karp-Rabin algorithm of Section 2.1).
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typedef char BI G | MAGE[ YSI ZE] [ YSI ZE] ;
t ypedef char SMALL_I MAGE[ XSI ZE] [ XSI ZE] ;

void BF_2D(BI G | MAGE y, SMALL_I MAGE x, int nl, int n2, int nl, int nR)

{
int i, j, k;

/* Searching */
for (i=0; i <= nl-nl; i++)
for (j=0; j <= n2-nR2; j++) {
k=0;
while (k < ml && strncmp(&[i+k][j], X[k], nmR) == 0) k++;
if (k >= nl) OUTPUT(i,j);

}
}
Figure 3.1: The brute force two-dimensional pattern matching algorithm.
Example 3.1:

albja|blal|b|b

2Tala alalalalb|b|b
b/ b|bjlalalal|b

x=|b|blaly=

alaja|b|lblala

alalb
b/ bjajla|a|b|b
ala|bjalblala

o' =[681] 681680 |y =[ 680 684 680 | 683 ] 681 ] 685 686 |

Since the alphabet of andy’ is large, searching far’ in 4’ must be done by a string-matching
algorithm which running time is independent of the size of the alphabet: the Knuth-Morris-Pratt suits
perfectly for this application. Its adaptation is shown in Figure 3.2.

When an occurrence af is found iny’, then, we still have to check if an occurrenceradtarts in
y at the corresponding position. This is donévedy by the procedure of Figure 3.3.

The Zhu-Takaoka algorithm working as explained above is dispayed in Figure 3.4. The search for
the pattern is performed row by row beginning at row 0 and ending atow m.

3.2 Bird/Baker algorithm

The algorithm designed independtly by Bird and Baker for the two-dimensional pattern matching
problem combines the use of the Aho-Corasick algorithm and the Knuth-Morris-Pratt algorithm. The
patternz is divided into itsmq rows: Ro = z[0,0...mp — 1] t0 R,,;—1 = 2[m1 — 1,0...mo — 1].

The rows are preprocessed into a trie as in the Aho-Corasick algorithm.
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void KVMP_IN LINE(BI G | MAGE Y, SMALL IMAGE X, int YB[], int XB[],
int nl, int n2, int m, int n2, int next[], int row
int i, j;
i =j =0;
while (j < n2) {
while (i > -1 & XB[i] '= YB[j]) i=next[i];
i+ ]+
if (i >=n2) {
DI RECT_COVPARE(Y, X, nl, n2, ml, n2,
i =next [ nR] ;
}

row, j-1);

Figure 3.2: Search far' in 4’ using KMP algorithm.

voi d DI RECT_COVPARE(BI G | MAGE Y, SMALL I MAGE X, int nl, int n2,
int mi, int n2, int row, int colum)
{
int i, j, i0, jO;
i O=r ow mil+1;
j O=col um- n2+1;
for (i=0; i < m,; i++)
for (j=0; j < n2; j++)

if (X[P][j] '= Y[iO0+i][jO+j]) return;
QUTPUT(i 0, jO);
}

Figure 3.3: Naive check of an occurrencexdh y at position(row, column).
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#define REHASH(a, b, h) (((h-a*d)<<1) +b)

void ZT(BI G I MAGE Y, SMALL_IMACGE X, int nl, int n2, int ml, int nR)

{
int YB[YSIZE], XB[XSIZE], next[XS|ZzE], j, i, row, d;

/* Preprocessing */
/* Conmputes first value y' */
for (j=0; j < n2; j++) {
YB[] ] =0;
for (i=0; i <i; i++) YB[j]=(YB[j]l<<1)+Y[i]lljl;
}

/* Conmputes x' */
for (j=0; j < n; j++) {

XB[ j ] =0;

for (i=0; i < l; i++) XB[j]=(XB[j]<<)+X[i][j];
}

row=nl-1;
d=1;
for (j=1; j < ml; j++) d<<=1

PRE_KMP( XB, nm2, next);

/* Searching */
while (row < nl) {
KMP_IN LINE(Y, X, YB, XB, nl, n2, ml, nR2, next, row);
if (row< nl-1)
for (j=0; j < n2; j++)
YB[j ] =REHASH( Y[ row nmiLl+1][j], Y[row+1][j], YB[j]);
r OW++;

Figure 3.4: The Zhu-Takaoka two-dimensional pattern matching algorithm.
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voi d PRE_KWMP(SVALL_I MAGE X, int nl, int n2, int next[])
{

int i, j;

i =0;
next [ 0] =j =(-1);
while (i < m) {
while (j > -1 & strnenp(X[i], X[j], nm2) !'=0) j=next[j];
i+ ]+
if (strncmp(X[i], X[j], nR) == 0) next[i]=next[j];
el se next[i]=];

Figure 3.5: Computes the failure function of Knuth-Morris-PrattXar

Example 3.2:
The trie of rows of pattern.

bla|a
z=|al|b|b
bla]|a
c¢ {2.) ) )
)2 ) (ab)
b

The search proceeds as follows. The text is read from the upper left corner to the bottom right
corner, row by row. When reading the characgér, j] the algorithm checks whether the portion

ylt,j — ma + 1...j] = R matches any ofRy,...R,,,—1 using the Aho-Corasick machine. An
additional one-dimensional arrayof sizeO(n4) is used as follows:

a[j] = k means that thé — 1 first rowsRy, . . ., Ri._» of the pattern match respectively
the portions of the texty[i — k+ 1,5 —mo+ 1...5],...,y[i— 1,7 —ma+ 1...7].

Then, if R = Ry_1, a[j] is incremented t& + 1. If not, a[j] is set tos + 1 wheres is the maximum
such that:

Ro...R; = Rk_5_|_1 ...Ri_oR.

The values is computed using KMP vertically (in columns). If there exists no syatj;] is set to 0.
Finally, if a[j] = m1 an occurrence of the pattern appears at positienm; + 1,7 — m2 + 1) in the
text.

The Bird/Baker algorithm is presented in Figures 3.5 and 3.6. It runs in @f@iny +
maimgy)logo).
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void B(BIG IMAGE Y, SMALL I MAGE X, int nl, int n2, int nml, int nR)
{

int next[ XSl ZE], a[TSlIZE], row, column, Kk;

NODE root, r, s;

char *x;

/* Preprocessing */

nmenset (a, 0, n2*sizeof (int));
root =PRE_AC( X, miL, nR);

PRE_ KMP(X, ml, n2, f):

/* Searching */
for (row=0; row < nl; rowt+) ({
r=root;
for (colum=0; colum < n2; colum++) ({
while ((s=GET_NODE(r, Y[row][colum])) == UNDEFI NED) r=GET_FAIL(r);
r=s;
i f ((x=GET_QUTPUT(r)) != UNDEFI NED) {
k=a[ col um];
while (k>0 && strncmp(X[k], x, nmR) !'=0) k=f[k];
a[ col um] =k+1;
if (k >= nil-1) OUTPUT(row nil+1, colum-n2+1);
}

el se a[ col um] =0;

Figure 3.6: The Bird/Baker two-dimensional pattern matching algorithm.
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Chapter 4

Suffix trees

The suffix treeS(y) of a stringy is a trie (see Section 2.6) containing all the suffixes of the string,
and having properties that are described below. This data structure serves as an index on the string: it
provides a direct access to all segments of the string, and gives the positions of all their occurrences in
the string.

Once the suffix tree of a textis built, searching for: in y remains to spelt along a branch of the
tree. If this walk is successful the positions of the pattern can be output. Otherwdses not occur
iny.

Any trie to represent the suffixes of a string can be used to search it. But the suffix tree has additional
features which imply that its size is linear. The suffix treg @§ defined by the following properties:

¢ all branches of(y) are labelled by all suffixes af,
¢ edges of5(y) are labelled by strings,
e internal nodes of(y) have at least two sons (wheris non empty),
¢ edges outgoing an internal node are labelled by segments starting with different letters,
¢ the above segments are represented by their starting and ending positjons in
Moreover, it is assumed thgtends with a symbol occurring nowhere else in it (the dollar sign
is used in examples). This avoids marking nodes, and impliesSthat has exactlyn + 1 leaves.
The other properties then imply that the total size50§) is O(n), which makes it possible to design
a linear-time construction of the trie. The algorithm described in the present section has this time

complexity provided the alphabet is fixed, or with an additional multiplicative factos lodperwise.
The algorithm inserts the suffixes ¢fin the data structure as follows:

T_1 — UNDEFINED;
for i — Oton — 1do

T; — INSERT(l;_1,y[i ...n — 1));
endfor

The last tredl’,_1 is the suffix treeS(y).
We introduce two definitions to explain how the algorithm works:

e head; is the longest prefix of[: .. .n — 1] which is also a prefix of[; . . .n — 1] for somej < ¢,
e tail; isthe word such thaff:...n — 1] = head;tail;.

The strategy to insert theth suffix in the tree is based on the previous definitions:
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INSERT(l}_1, y[i...n — 1])
locate the nodé associated witlkead; in T;_1, possibly breaking an edge;
add a new edge labelled:/; from  to a new leaf representing suffiXi .. .n — 1];
return the modified tree;

The second step of the insertion is performed in constant time. It is thus finding thé tioateis
critical for the overall performance of the algorithm. A brute force method to find it consists in spelling
the current suffixy[:...n — 1] from the root of the tree, giving a@(|head;|) time complexity for
insertion at step, and anO(7?) running time to builtS(y). Adding ‘short-cut’ links leads to an overall
O(n) time complexity, although insertion at stéfs not realized in constant time.
Example 4.1:
The different trees during the construction of the suffix tre¢ ¢f CAGATAGAGS. Leaves are black
and labelled by the position of the suffix they represent. Dashed arrows represent the non trivial suffix
links.

0, 0,9/ \L9
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4.1 McCreight algorithm

The clue to get an efficient construction of the suffix té&e) is to add links between nodes of the tree:
they are calleduffix links. Their definition relies on the relationship betwédeiad; _1 andhead;:

if head;_1 is of the formaz (a € Z, 2z € Z¥),
thenz is a prefix ofhead;.

In the suffix tree the node associated witls linked to the node associated with. The suffix link
creates a short-cut in the tree that helps finding the next head efficiently. To insert the next suffix,
namelyhead;tail;, in the tree reduces to the insertiontefl; from the node associated witlead;.

The following property is an invariant of the construction:7ip only the node: associated with
head; can fail to have a valid suffix link. This happen whérhas just been created at stepThe
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procedure to find the next head at stép composed of two main phases:

A Rescanning

Assume thatiead;_1 = az (a € Z, z € Z¥) and letd’ be the associated node.

If the suffix ond’ is defined, it leads to a nodifrom which the second step starts.

Otherwise, the suffix link od’ is found by ‘rescanning’ as follows. Letbe the father of’, and

let w be the label of edgé’, d’). For the ease of the description, assumedhat avw (it may
happen thatz = w). There is a suffix link defined o#f and going to some nodeassociated
with a». The crucial observation here is thatis prefix of the label of a branch starting at node
¢. The algorithm rescans in the tree: lek be the child ofc along that branch, and lgtbe the
label of edgé ¢, €). If |p| < |w]| then a recursive rescan @fwherew = pq, starts from node.

If |p| > |w|, the edgéc, e) is broken to insert a new nodk labels are updated correspondingly.
If |p| = |wl|, d is simply set tc.

If the suffix link of " is currently undefined, it is set th

B Scanning

A downward search starts frodto find the node: associated withead;. The search is dictated
by the characters afi:l;_1 one at a time from left to right. If necessary a new internal node is
created at the end of the scanning.

After the two phases A and B, the node associated with the new head is known, and the tail of the
current suffix can be inserted in the tree.

To analyse the time complexity of the entire algorithm we mainly have to evaluate the total time
of all scannings, and the total time of all rescannings. We assume that the alphabet is fixed, so that
branching from a node to one of its sons can be implemented to take constant time. Thus, the time
spent for all scannings is linear because each lettgri@Ecanned only once. The same holds true for
rescannings because each step downward (throughe)@usreases strictly the position of the ward
considered there, and this position never decreases.

An implementation of McCreight's algorithm is shown in Figure 4.1. The next figures give the
procedures used by the algorithm, and especially proceRESSAN and SCAN.
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NODE M char *y, int n)

{

NODE root, head, tail, d;
char *end, *ganms;

end=y+n;

head=root=I NI T(y, n);
tai | =GET_SON(root, *y);

while (--n) {
/* Phase A (rescanning) */
if (head == root) {
d=root; gamma=CET_LABEL(tail) +1;
} else {
gamua=CGET_LABEL(tail);
i f (GET_LINK(head) != UNDEFI NED) d=GET_LI NK( head);
el se {
i f (GET_FATHER(head) == root)
d=RESCAN(r oot, GET_LABEL(head)+1, GET_LENGTH(head)-1);
el se
d=RESCAN( GET_LI NK( GET_FATHER( head) ), GET_LABEL(head), GET_LENGTH(head));
PUT_LI NK( head, d);
}
}

/* Phase B: scanning */
head=SCAN(d, &gamm);

t ai | =ALLOCATE_NODE() ;
PUT_FATHER(tail, head);
PUT_LABEL(tail, gamm);
PUT_LENGTH(tail, (int)(end-gamm));
PUT_SON( head, *gamma, tail);

}

return(root);

}

Figure 4.1: Suffix tree construction.
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NODE | NI T(char *y, int n)

{
NODE r oot, son;

r oot =ALLOCATE_NODE( ) ;
son=ALLOCATE_NODE() ;
PUT_FATHER(r oot , UNDEFI NED);
PUT_FATHER(son, root);
PUT_SON(root, *y, son);
PUT_LABEL(root, UNDEFI NED);
PUT_LABEL(son, vy);
PUT_LENGTH(r oot, 0);
PUT_LENGTH( son, n);
return(root);

Figure 4.2: Initialization procedure.

NODE RESCAN(NODE c, char *beta, int n
{
while (m> 0 &% m >= GET_LENGTH(GET_SON(c, *beta))) {
c=CGET_SON(c, *beta);
m =GET_LENGTH(c);
bet a+=CGET_LENGTH(c);
}
if (m> 0) return(BREAK EDGE(GET_SON(c, *beta), m);
el se return(c);

}

Figure 4.3: The crucial rescan operation.

NODE BREAK_EDGE(NCDE X, int k)

{
NCDE v;

y=ALLOCATE_NODE() ;

PUT_FATHER(y, GET_FATHER(X));
PUT_SON( GET_FATHER(x), *GET_LABEL(X), Y);
PUT_LABEL(y, GET_LABEL(X));
PUT_LENGTH(y, Kk);

PUT_FATHER( x, V);

PUT_LABEL(x, GET_LABEL(x) +k);
PUT_LENGTH(x, GET_LENGTH(x)-Kk);
PUT_SON(y, *GET_LABEL(Xx), X);
PUT_LI NK(y, UNDEFI NED);
return(y);

Figure 4.4: Breaking an edge.
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NODE SCAN(NODE d, char **ganmmm)
{

NCDE f;

int k, |g;

char *s;

while (GET_SON(d, **garmmma) != UNDEFI NED) {

f=CGET_SON(d, **ganms);

k=1;

S=GET_LABEL(f) +1;

| g=GET_LENGTH(f);

(*gamma) ++;

while (k < lg & **gamma == *s) {
(*gamma) ++;
S++;
k++;

}
if (k <1g) return(BREAK_EDCGE(f, Kk));
d=f;
(*gamma) ++;
}

return(d);

}

Figure 4.5: The scan operation.
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Chapter 5

L ongest common subseguence of two
strings

The notion of a longest common subsequence of two strings is widely used to compare filds f The
command of UNIX system implement an algorithm based of this notion where lines of the files are
considered symbols. Informally, the result of a comparison gives the minimum number of operations
(insert a symbol, or delete a symbol) to transform one string into the other, which introduces what is
known as thedit distance between the strings (see Chapter 6). The comparison of molecular sequences
is basically done with a closed concept, alignment of strings, which consists in aligning their symbols
on vertical lines. This is related to an edit distance with the additional operation of substitution.

A subsequence of a wordis obtained by deleting zero or more characters froriviore formally
w[0...7 — 1] is a subsequence af0...m — 1] if there exists an increasing sequence of integers
(k;/j=0,...,i—1)suchthat, for X j <¢—1,w[j] = z[k;]. We say that a word is alas(z, y) if
it is a longest common subsequence of the two wardady. Note that two strings can have several
les(z,y). Their (unique) length of denoted Bies(z, y).

A brute force method to compute &ss( 2, ) would consist in computing all the subsequences of
z, checking if they are subsequenceg @ind keeping the longest one. The werdf lengthm has 2*
subsequences, so this method is impracticable for large values of

5.1 Dynamic programming

The commonly-used algorithm to computelas( z, y) is a typical application of the dynamic program-

ming method. Decomposing the problem into subproblems produces wide overlaps between them.
So memorization of intermediate values is necessary to avoid recomputing them many times. Using
dynamic programming it is possible to computelas(z, y) in O(mn) time and space. The method
naturally leads to computinigs’s for longer and longer prefixes of the two words. To do so, we consider
the two-dimensional tablé defined by:

L[i,0]= L[0,j]=0, for0<i<mand0< j < n, and
Lli+1,j+ 1) =1les(z[0...7],y[0...4]), for0<i<m-—1land0< j <n-—1

Computinglcs(z,y) = L[m,n]relies on a basic observation that yields the simple recurrence relation
O<i<m,0<j<mn):

Lli,jl+1 if w[i] = y[j],

Lli+1,j+1] = { max L[i,j+ 1], L[i + 1,7]) otherwise.

33



voi d LCS(char *x, char *y, int m int n, int L[YSIZE][YSIZE])
{

int i, j;

for (i=0; i <= m i++) L[i][0]=0;
for (j=0; j <=n; i++) L[O][]j]=0;

for (i=0; i <m i++)
for (j=0; j < n; j+4)
if (x[i] ==y[j]) LLT+1][j+1]=L[i][j]+1;
else L[i+1][j+1]=MAX(L[i+2][j], L[ill[]j+1]);
return L[nj[n];
}

Figure 5.1: Dynamic programming algorithm to complite(z, y) = L[m,n].

The relation is used by the algorithm of Figure 5.1 to compute all the values£fond] to L[m, n].

The computation obviously také(mn) time and space. It is afterward possible to trace back a path
from L[m, n] to exhibit anics(z, y) (see Figure 5.2).

Example 5.1:

String AGGA is an Ics ofr andy.

>|<
o
o o0

5.2 Reducingthe space: Hirschbergalgorithm

If only the length of arles(z, y) is needed, it is easy to see that only one row (or one column) of

the tableL needs to be stored during the computation. The space complexity beCam@x ., n))
(see Figure 5.3). Indeed, Hirschberg algorithm computessn, y) in linear space (and not only the
valuellcs(z, y)) using the previous algorithm.

Let us define:
L*[i, ] = Ues((xfi...m — IDE, (y[j...n — 1)) and

M(i) = max {L[i,j]+ L3, j]}
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char *TRACE(char *x, char *y, int m int n, int L[YSIZE][YSIZE])
{

int i, j, I;

char z[ YSI ZE];

i=m j=n; I=L[mM[n];
z[1--1="\0";
while (i >0 &% j > 0) {
if (L[iJ[j] == L[i-1][j-1] && x[i-1] == y[j-1]) {

z[I--]=x[i-1];
== -
}
else if (L[i-11[j] > L[i][j-12]) i--;
else j--;
}
return(z);
}

Figure 5.2: Production of afes(z, ).

void LLCS(char *x, char *y, int m int n, int *L)
{

int i, j, last;

for (i=0; i <=n; i++) L[i]=0;
for (i=0; i <m i++) {
| ast =0;
for (j=0; j < n; j+4)
if (last > L[j+1]) L[] +1]=last;
else if (last < L[j+1]) last=L[]j+1];
else if (x[i] ==y[j]) {

L[] +1] ++;
| ast ++;
}
}
return L[n];
}

Figure 5.3:0(min(m, n))-space algorithm to computés(z, y).
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voi d LLCS_REVERSE(char *x, char *y, int a, int m int n, int *llcs)

{
int i, j, last;
for (i=0; i <=n; i++) llcs[i]=0;
for (i=m1; i >=a; i--) {
| ast =0;
for (j=n-1; j >=0; j--)
if (last > 1lcs[n-j]) Ilcs[n-j]=last;
else if (last < Ilcs[n-j]) last=llcs[n-j];
else if (x[i] ==y[j]) {
[lcs[n-j]++;
| ast ++;
}
}
}

Figure 5.4: Computation af*.

where the wordyv” is the reverse (or mirrorimage) of the ward The algorithm of Figure 5.4 compute
the tableL*. The following property is the key observation to computéeaiz, y) in linear space:

for0<i < m, M(z)= L[m,n].

In the algorithm shown in Figure 5.5 the integeis chosen asn/2. After L[:,j] and L*[i, j]
(0 < j < m) are computed, the algorithm finds an integesuch thatl.[i, k] + L*[i, k] = L[m,n].
Then, recursively, itcomputes &(z[0...¢], y[0...k])andanes(z[i+1...m—1], y[k+1...n-1]),
and concatenate them to getlas(z, y).

The running time of the Hirschberg algorithm is s@il{mn) but the amount of space required for
the computation becomé&X min(m, n)) instead of being quadratic as in Section 5.1.
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char *H RSCHBERG( char *x, char *y, int m int n)
{

int i, j, k, M L1[YSIZE], L2[YSIZE];

char z[ YSI ZE];

strepy(z, "");
if (m==0) return
else if (m==1) {
for (i=0; i < n; i++)
it (x[0] ==y[i]) {
z[ 0] =x[ O] ;
z[1]="\0";
return(z);

}

return(z);
}
el se {
i=m 2;
LLCS(i, n, x, vy, L1);
LLCS REVERSE(i, m n, X, y, L2);
k=n;
MeLL[ n] +L2[ O] ;
for (j=n-1; j >=0; j--)
it (LI[j]+L2[n-j] >= M {
MeLA[j]+L2[n-j];
k=j ;
}
strcat(z, H RSCHBERG i, k, X, Vy));
strcat(z, HIRSCHBERG mi, n-k, x+i, y+k))
return(z);

Figure 5.5:0(min(m, n))-space computation @és(z, y).
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Chapter 6

Approximate string matching

Approximate string matching consists in finding all approximate occurrences of a patiElengthm

in a texty of lengthn. Approximate occurrences ofare segments af that are close te according to
a specific distance: the distance must be not greater than a given ihtéfyerconsider two distances,
theHamming distance and thel evenshtein distance.

With the Hamming distance, the problem is also called as the approximate string matchitg with
mismatches. With the Levenshtein distance (or edit distance) the problem is known as the approximate
string matching withk differences.

The Hamming distance between two worgsandw, of same length counts the number of positions
with different characters. The Levenshtein distance between two wgrdedw, (not necessarily of
the same length) is the minimal number of differences between the two words. A difference is one of
the following operation:

¢ asubstitution: a character af; corresponds to a different charactetui
¢ aninsertion: a character af; corresponds to no character:in,
¢ adeletion: a character af, corresponds to no character:in.

The Shift-Or algorithm of the next section is a method that is both very fast in practice and very
easy to implement. It adapts to the two above problems. We initially describe the method for the
exact string-matching problem and then we show how it can handle the cdsessrhatches and df
insertions, deletions, or substitutions. The main advantage of the method is that it can adapt to a wide
range of problems.

6.1 Shift-Or algorithm

We first present an algorithm to solve the exact string-matching problem using a technique different
from those developped in Chapter 2.

Let R° be a bit array of size:. VectoreR? is the value of the arrag® after text charactey[:] has
been processed (see Figure 6.1). It contains informations about all matches of prefixbatafnd at
position: in the text (0< j < m — 1):

o) O ifz[0...4]=yli—17...1],
i3] _{ 1 otherwise.
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1]
20...1 =1 |o
1

x j=m-1 |0]

=

0
7

Figure 6.1: Meaning of vectak?.

The vectork?, , can be computed afté?? as follows. For eact?[;] = 0:

, 0 ifz[j+1 =yli+1]
0 _ b
Rili+ 1= { 1 otherwise,
and
0 ) O ifz0]=yli+1],
Ri4[0] = { 1 otherwise.

If B2, ,[m — 1] = 0 then a complete match can be reported.
The transition fromr? to R, , can be computed very fast as follows. For each ., let S, be a
bit array of sizem such that:

for 0<j<m-1, 5,[j]=0iff z[j] = a.

The array$, denotes the positions of the characten the patternz. EachS, can be preprocessed
before the search. And the computatiorﬂ?i1 reduces to two operations, shift and or:

R, 1 = HIFT(R?) OR S,111)-

Example 6.1:
2 — GATAA andy — CAGATAAGAGAA

Sp Sc Se ST

1 1 0 1

o 1 1 1

1 1 1 O

o 1 1 1

o 1 1 1
C A GATAAGAGAA
G1 1 01 1 1 1 0 1 0 1 1
A 1 1 1 0 1 1 1 1 0 1 0 1
T 1 1 1 1 0 1 1 1 1 1 1 1
A1 1 1 1 1 0 1 1 1 1 1 1
A1 1 1 1 1 1 0 1 1 1 1 1

39



ii+1
y | [

]
I P

Figure 6.2: IfR%[j] = O thenR},[j + 1] = 0.

ii+1
y | [

N 2 I
L~ it

Figure 6.3:R}, 1[5 + 1] = RI[j]if y[i + 1] = «[J].

6.2 String matching with & mismatches

The shift-or algorithm easily adapts to support approximate string matchingkwittsmatches. To
simplify the description, we shall show the case where at most one substitution is allowed.

We use array%® andS as before, and an additional bit arr&y of sizem. Vector R} indicates all
matches with at most one substitution up to the text chargterTwo cases can arise:

e Thereis an exact match on the fijstharacters of up toy[:] (i.e. R9[j] = 0). Then, substituting
y[i + 1] to z[7] creates a match with one substitution (see Figure 6.2). Thus,

REA[7+ 1] = RY[5).
¢ There is a match with one substitution on the firsharacters of up toy[:] andy[i + 1] = 2[j].

Then, there is a match with one substitution of the first 1 characters of up toy[i + 1] (see
Figure 6.3). Thus,

. RG] i yli+ 1] = 2[))
1 _ { ’
R+ = { 1 otherwise.

Finally R}, can be updated fromt} as follows:

R}, = (SHIFT(R}) OR S,5;41) AND SHIFT(R?
+ yli+1]

Example 6.2:
2 — GATAA andy — CAGATAAGAGAA
CAGATAAGAGAA

G 0 0 0 0 0O 0OOO OO O0OTO
A1 01 01 0O010 100
T 1 11 1 0 1 1 1 1 0 10
A1 1111 01111 0 1
A1 11111011110
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i+ 1

y [ [ ]
j
Figure 6.4: IfR?[j] = O thenR} ,[j] = O.
ii+1
y [ [ ]

I I
IS

Figure 6.5:RY, ,[j + 1] = R}[j]if y[i + 1] = [j + 1].

6.3 String matching with £ differences

We show in this section how to adapt the shift-or algorithm to the case of only one insertion, and then
of only one deletion. The method where one insertion, and then where one deletion, is allowed is based
on the following elements.

Oneinsertion: R} indicates all matches with at most one insertion up to text charagfer

R[] = 0 if the firstj + 1 characters of (z[0...;]) matchj + 1 symbols of the lasf + 2 text
characters up tg[:].

Array R is maintained as before, and we show how to maintain akfayTwo cases can arise for a
match with at most one insertion on the fiyst 2 characters of up toy[i + 1]:

e There is an exact match on the figst- 1 characters of (z[0...j]) up toy[i]. Then inserting
y[i + 1] creates a match with one insertion ug/fo+ 1] (see Figure 6.4). Thus

Rilj] = Rl

e There is a match with one insertion on thiet 1 first characters of: up to y[i]. Then if
y[t + 1] = z[j + 1] there is a match with one insertion on the fifst 2 characters of up to
y[7 + 1] (see Figure 6.5). Thus,

, RG] ifyli+ 1) = afj + 1]
1 _ : ’
Ripalj+1 = { 1 otherwise.

Finally, R}, , is updated fromk;} with the formula:

Rl 1 = (HIFT(R}) OR S,41)) AND R2.
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ii+1
y | [

1
i

Figure 6.6: IfR?, ,[j] = O thenR}, [ + 1] = 0.

ii+1
y | [

I I R
- i+t

Figure 6.7:RY ,[j + 1] = RI[j]if y[i + 1] = [j + 1].

Example 6.3:
2 — GATAA andy — CAGATAAGAGAA

A AGAGAA

>>-EH>0
PR R RrRQO
PR R R D>
P RRRRPRO
PR RROP
PR PR OR
PR OR R
P ORRRE
OR R RERE
=
e = = = R =
PR R RPO
e = = R =

Onedeletion: We assume now thdt} indicates all possible matches with at most one deletion up to
y[¢]. Again two cases arise:

e Thereisan exact match onthe fifst1 characters of (z[0. . . j]) up toy[i+1] (i.e. R?H[j] = 0).
Then, deleting:[j] creates a match with one deletion (see Figure 6.6). Thus,

Rz'l+1[j +1] = R?—|—1U]-
e There is a match with one deletion on the fifstharacters of: up toy[i] andy[i + 1] = z[j].

Then, there is a match with one deletion on the fjrst 1 characters of up to y[i + 1] (see
Figure 6.7). Thus,

: RG] i y[i+ 1) = 2fj + 1]
1 _ 7 )
Riali+1]= { 1 otherwise.

Finally, R}, , is updated fronk} with the formula:

Rl 1 = (HIFT(R}) OR S,11) AND SHIFT(R?, ;).
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Example 6.4
2 — GATAA andy — CAGATAAGAGAA

CAGATAAGAGAA
G0 0 0 0 O0O O0OO0OO0OO0OO0O0 o0
A1 00 01 0 O0OO0OOOO0OTOo
T 1 1 1 0 0 1 1 1 0 1 0 1
A1 1 11 0 01 1 1 1 10
A1 1 111 001 1 1 11

6.4 Wu-Manber algorithm

We present the approximate string matching with at rhaktferences of the types: insertion, deletion,
and substitution. We need to maintdin- 1 bit arraysk®, R, ..., R*. The vectorR? is maintained
similarly as in the exact matching case (Section 6.1). The other vector are computed with the formula
(1<j<k) 4 4
Rf+1 = (SH”:T(Rf) OR Sy[i+l])

AND SHIFT(R![7)

AND SHIFT(RI™Y

AND RI71,

which can be rewritten into:

Rl = (SHIFT(R)) OR S,4qy)
AND SHIFT(RI;] AND R/

AND RI71.
Example 6.5:
x — GATAA andy — CAGATAAGAGAA andk = 1
CAGATAAGAGAA

G 0 0 0 0 0O 0OOO OO O0TUO
A1 00 O0OO0OOUOUOTU OO OTUOSUO
T 1 11 0 0 01 1 0 0 0O
A1 11100011100
A1 1 111 0O0O01 1 10

The Wu-Manber algorithm (see Figure 6.8) assumes that the pattern length is no more than the
memaory-word size of the machine, which is often the case in applications. The preprocessing phase

takesO(om + km) memory space, and runs in tifiéom + k). The time complexity of the searching
phase i) (kn).
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void WM char *y, char *x, int n, int m int k)

{
unsigned int j, lastl, last2, lim mask, S[ASIZE], R KSIZE];
int i;

/* Preprocessing */
for (i=0; i < ASIZE; i++) S[i]="0;
['i m=O0;
for (i=0, j=1; i <m i++, j<<=1) {
S[x[i]]&"];
Lim =j;
}

im™(1inp>1);
R 0] ="0;
for (j=1; ] <=k; j++) Rj]=Rj-1]>>1;

/* Search */
for (i=0; i <n; i++) {
| ast 1=R[ 0] ;
mask=S[y[i]];
R[ 0] =(R[ 0] <<1) | mask;
for (j=1; ] <=k; j++) {
last2=R[j];
REjT=((R[j]<<1)| mask) & (l ast 1&R[j - 1] ) <<1) & ast 1;
| ast 1=I ast 2;

}
if (Rl < linm) OUTPUT(i-mtl);

Figure 6.8: Wu-Manber approximate string-matching algorithm.
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Chapter 7

Text compression

In this section we are interested in algorithm that compress texts. This serves both to save storage place
and to save transmission time. We shall consider that the uncompressed text is stored in a file. The aim
of algorithms is to produce another file containing the compressed version of the same text. Methods
of this section work with no loss of information, so that decompressing the compressed text restores
exactly the original text.

We apply two strategies to design the algorithms. The first strategy is a statistical method that takes
into account the frequencies of symbols to built a uniquely decipherable code optimal with respect to
the compression. The code contains new codewords for the symbols occurring in the text. In this
method fixed-length blocks of bits are encoded by different codewdrdsntrario the second strategy
encodes variable-length segments of the text. To say it simply, the algorithm, while scanning the text,
replaces some already read segments by just a pointer onto their first occurrences.

7.1 Huffman coding

Huffman method is an optimal statistical coding. It transforms the original code used for characters
of the text (ASCII code on 8 bits, for instance). Coding the text is just replacing each occurrences of
characters by their new codewords. The method works for any length of blocks (not only 8 bit) but the
running time grows exponentially with this length.

Huffman algorithm uses the notion pfefix code. A prefix code is a set of words containing no
word that is a prefix of another word of the set. The advantage of such a code is that decoding is
immediate. Moreover, it can be proved that this type of code do not weaken the compression.

A prefix code on the binary alphabgd, 1} can be represented by a trie (see Section 2.6) that is a
binary tree. In the present method codes are complete: they correspond to complete trie (internal nodes
have exactly two children). The leaves are labelled by the original characters, edges are labelled by 0
or 1, and labels of branches are the words of the code. The condition on the code imply that codewords
are identified with leaves only. We adopt the convention that, from a internal node, the edge to its left
son is labelled by 0, and the edge to its right son is labelled by 1.

In the model where characters of the text are given new codewords, Huffman algorithm built a code
that is optimal in the sense that the compression is the best possible (the length of the compressed text
is minimum). The code depends on the text, and more precisely on the frequencies of each character in
the uncompressed text. The most frequent characters are given short codewords while the least frequent
symbols have longer codewords.
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int COUNT(FILE *fin, CODE *code)
{

int c;

while ((c=getc(fin)) !'= EOF) code[c].freq++;
code[ END] . freq=1;
}

Figure 7.1: Counts the character frequencies.

7.1.1 Encoding

The coding algorithm is composed of three steps: count of character frequencies, construction of the
prefix code, encoding of the text.

The first step consists in counting the number of occurrences of each character of the original text
(see Figure 7.1). We use a special end marker (denot&iNBy, which (virtually) appears only once
at the end of the text. It is possible to skip this first step if fixed statistics on the alphabet are used. In
this case the method is optimal according to the statistics, but not necessarily for the specific text.

The second step of the algorithm builds the tree of a prefix code using the character frequency
freq(a) of each character in the following way:

¢ Create a root-treefor each character with weight(t) = freq(a),
¢ Repeat

— Select the two least frequent tregsandty,
— Create a new trelg with left sontq, right sont, andweight(t3) = weight(t1)+weight(ty)

¢ Untilit remains only one tree.

The tree is contructed by the algorithm, the only tree remaining at the end of the procedure, is the coding
tree.

Inthe implementation of the above scheme, a priority queue is used to identify the two least frequent
trees (see Figures 7.2 and 7.3). After the tree is built, it is possible to recover the codewords associated
with characters by a simple depth-first-search of the tree (see Figure 7.4).

In the third step, the original text is encoded. Since the code depends on the original text, in order
to be able to decode the compressed text, the coding tree must be stored with the compressed text.
Again this is done via a depth-first-search of the tree. Each time an internal node is enabariese
produced. When a leaf is encountered a 1 is produced followed by the ASCII code of the corresponding
character on 9 bits (so that the end marker can be equal to 256 if all the ASCII characters are used in
the original text). This part of the encoding is shown in Figure 7.5.

Encoding of the original text is realized by the algorithm of Figure 7.6. Bits are written 8 by 8 in
the compressed file using both a buffeuf{ f er ) and a counteryi t s2go). Each time the counter is
equal to 8, the corresponding byte is written (see Figures 7.7 and 7.8). Since the total number of bits is
not necessarily a multiple of 8, some bits may have to be produced at the end (see Figure 7.9).

All the preceding steps are composed to give a complete encoding program, which is given in
Figure 7.11.
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i nt BU LD_HEAP( CODE *code, PRI ORI TY_QUEUE queue)
{

int i, size;

NCDE node;

si ze=0;
for (i=0; i <= END;, i++)
if (code[i].freq !=0) {
node=ALLOCATE_NODE() ;
PUT_WEI GHT(node, code[i].freq);
PUT_LABEL( node, i);
PUT_LEFT(node, NULL);
PUT_RI GHT(node, NULL);
HEAP_| NSERT( queue, node);
Si ze++;
}

return(size);

}

Figure 7.2: Builds the priority queue of trees.

NODE BUI LD_TREE( PRI ORI TY_QUEUE queue, int size)

{
NCDE root, |eftnode, rightnode;

while (size > 1) {
| ef t node=HEAP_EXTRACT_M N( queue) ;
ri ght node=HEAP_EXTRACT_M N( queue) ;
r oot =ALLOCATE_NODE( ) ;
PUT_VEI GHT(root, GET_WEI GHT( | ef t node) +GET_WEI GHT(ri ght node) ) ;
PUT_LEFT(root, |eftnode);
PUT_RI GHT(root, ri ghtnode);
HEAP_| NSERT( queue, root);
si ze--;
}

return(root);

}

Figure 7.3: Builds the coding tree.
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voi d BU LD _CODE( NODE root, CODE *code, int |ength)
{

static char tenp[ASI ZE+1];

int c;

if (GET_LEFT(root) != NULL) {
tenp[ | engt h] =0;
BUI LD CODE(GET_LEFT(root), code, |ength+1);
tenmp[ | engt h] =1;
BUI LD CODE(GET_RI GHT(root), code, |ength+l);
}
el se {
c=CGET_LABEL(root);
code[ c] . codeword=(char *)nmall oc(l ength);
code[c] .| g=Il engt h;
strncpy(code[ c]. codeword, tenp, |ength);

Figure 7.4: Builds the character codes by a depth-first-search of the coding tree.

voi d CODE_TREE(FI LE *fout, NODE root)

{
if (GET_LEFT(root) != NULL) {
SEND BI T(fout, 0);
CODE_TREE(fout, GET _LEFT(root));
CODE_TREE(fout, GET_RI GHT(root));
}
el se {
SEND BI T(fout, 1);
ASCI | 2BI TS(fout, GET_LABEL(root));
}
}

Figure 7.5: Memorizes the coding tree in the compressed file.

voi d CODE_TEXT(FILE *fin, FILE *fout)
{

int c, i;

rewi nd(fin);
while ((c=getc(fin)) != EOF)
for (i=0; i < code[c].lg; i++)
SEND BI T(fout, code[c].codeword[i]);
for (i=0; i < code[END].Ig; i++)
SEND BI T(fout, code[ END].codeword[i]);

Figure 7.6: Encodes the characters in the compressed file.
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voi d SEND BI T(FILE *fout, int bit)
{

buf f er >>=1;
if (bit) buffer|=0x80;
bi t s2go++;
if (bits2go == 8) {
putc(buffer, fout);
bi t s2go=0;
}
}

Figure 7.7: Sends one bit in the compressed file.

int ASCII2BI TS(FILE *fout, int n)

{

int i;

for (i=8; i>=0; i--) SEND BIT(fout, (n>>i)&l1);
}

Figure 7.8: Encodes on 9 bits.

voi d SEND_LAST BI TS(FI LE *fout)

{
i f (bits2go) putc(buffer>>(8-bits2go), fout);

}

Figure 7.9: Outputs a final byte if necessary.

voi d I NI T(CODE *code)

{

int i;

for (i=0; i < ASIZE, i++) {

code[i].freqg=code[i] .| g=0;
code[i].codewor d=NULL;

Figure 7.10: Initializes the array code.
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#defi ne ASI ZE 255
#define END (ASI ZE+1) /* code of ECF */

t ypedef struct {
int freq, 1g;
char *codewor d;
} CODE;

int buffer;
i nt bits2go;

voi d CODI N& char *fichin, char *fichout)
{

FILE *fin, *fout;

int size;

PRI ORI TY_QUEUE queue;

NCDE r oot ;

CODE code[ ASI ZE+1] ;

if ((fin=fopen(fichin, "r")) == NULL) exit(0);
if ((fout=fopen(fichout, "w')) == NULL) exit(0);
I NI T(code);

COUNT(fin, code);

si ze=BUI LD _HEAP( code, queue);

root =BUI LD _TREE( queue, size);

BUI LD CODE(root, code, 0);

buf f er =bi t s2go=0;

CODE_TREE( f out, root);

CODE_TEXT(fin, fout);

SEND_LAST BI TS(fout);

fclose(fin);

fcl ose(fout);

Figure 7.11: Complete function for Huffman coding.
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Example 7.1:

y = CAGATAAGAGAA

Length: 12*8=96 bits (if an 8-bit code is assumed)

character frequencie\;:A C/G|/T|END
6|1(3|1] 1

The different steps during the construction of the coding tree:

@@@@@ ® ®®

T END G A END

D (2)
END (1] (D) ®

T
(3) ®® (6)
G A (3)
2)
C T END (1] (D
C T

character codeword A ¢ G T END
71| 0010 | 01 | 0011 | 00O

Tree code0001binary(END,9)01binary(C,9)1 binary(T,9)1binary(G9)1binary@,9)
thus:0001 100000000 01 001000011 1 001010100 1 001000111 1 001000001
Length: 54

Textcode:0010 1 01 1 0011 1 1 01 1 01 1 1 000
Length: 24

Total length: 78

The construction of the tree také&3$o log o) if the priority queue is implemented efficiently. The
rest of the encoding process runs in time linear in the sum of the sizes of the original and compressed
texts.
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voi d REBUI LD TREE(FI LE *fin, NODE root)

{
NCDE | ef t node, ri ghtnode;

if (READ BIT(fin) == 1) { /* leaf */
PUT_LEFT(root, NULL);
PUT_RI GHT(root, NULL);
PUT_LABEL(root, BITS2ASCII(fin));
}
el se {
| ef t node=ALLOCATE_NODE() ;
PUT_LEFT(root, |eftnode);
REBUI LD_TREE(fin, |eftnode);
ri ght node=ALLOCATE_NODE() ;
PUT_RI GHT(r oot, ri ghtnode);
REBUI LD_TREE(fin, rightnode);

Figure 7.12: Rebuilds the tree read from the compressed file.

int Bl TS2ASCI | (FI LE *fin)
{

int i, value;

val ue=0

for (i=8; i >=0; i--) value=val ue<<l1+READ BI T(fin);
return(val ue);

}

Figure 7.13: Reads the next 9 bits in the compressed file and returns the corresponding value.
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voi d DECODE_TEXT(FILE *fin, FILE *fout, NODE root)

{
NODE node;
node=r oot ;
while (1) {
i f (GET_LEFT(node) == NULL)
i f (GET_LABEL(node) != END) {
put c( GET_LABEL( node), fout);
node=r oot ;
el se break;
else if (READ BIT(fin) == 1) node=GET_RI GHT( node);
el se node=GET_LEFT( node);
}
}
Figure 7.14: Reads the compressed text and produces the uncompressed text.
7.1.2 Decoding

Decoding a file containing a text compressed by Huffman algorithm is a mere programming exercise.
First the coding tree is rebuild by the algorithm of Figure 7.12. It uses a function to decode a integer
written on 9 bits (see Figure 7.13). Then, the uncompressed text is recovered by parsing the compressed
text with the coding tree. The process begins at the root of the coding tree, and follows a left branch
when a 0 is read or a right branch when a 1 is read. When a leaf is encountered, the corresponding
character (in fact the original codeword of it) is produced and the parsing phase resumes at the root of
the tree. The parsing ends when the codeword of the end marker is read. The decoding of the text is
presented in Figure 7.14. Again in this algorithm the bits are read with the use of a touffdrer )
and a countert(i t s_i n_st ock). A byte is read in the compressed file only if the counter is equal to
zero (see Figure 7.15).

The complete decoding program is given in Figure 7.16. It calls the preceding functions. The
running time of the decoding program is linear in the sum of the sizes of the texts it manipulates.

7.2 LZW Compression

Ziv and Lempel designed a compression method using encoding segments. These segments are stored
in a dictionary that is built during the compression process. When a segment of the dictionary is
encountered later while scanning the original text it is substituted by its index in the dictionary. In the
model where portions of the text are replaced by pointers on previous occurrences, the Ziv-Lempel
compression scheme can be proved to be asymptotically optimal (on large enough texts satisfying good
conditions on the probality distribution of symbols).

The dictionary is the central point of the algorithm. It has the property to be prefix-closed (every
prefix of a word of the dictionary is in the dictionary), so that it can be implemented as a tree.
Furthermore, a hashing technique makes its implementation efficient. The version described in this
section is called Lempel-Ziv-Welsh method after several improvement introduced by Welsh. The
algorithm is implemented by theonpr ess command existing under the UNIX operating system.
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i nt READ_BI T(FILE *fin)

{

int bit;

if (bits_in_stock == 0) {
buf f er=getc(fin);
bits_in_stock=8

}

bi t =buf fer &1;

buf f er >>=1;

bits_in_stock--;
return(bit);

nt buffer;

Figure 7.15: Reads the next bit from the compressed file.

int bits_in_stock;

{

FI LE *fi n,
NODE r oot ;

voi d DECODI N char *fichin, char *fichout)

*fout;

if ((fin=fopen(fichin, "r")) == NULL) exit(0);
if ((fout=fopen(fichout, "w')) == NULL) exit(0);

I NI T(code) ;

buf fer=bits_in_stock=0;

r oot =ALLOCATE_NODE( ) ;

REBUI LD TREE(fin, root);
UNCOVWPRESS(fin, fout, root);
fclose(fin);

fcl ose(fout);

Figure 7.16: Complete function for decoding.
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7.2.1 Compression method

We describe the scheme of the compression method. The dictionary is initialized with all the characters
of the alphabet. The current situation is when we have just read a segnoéthe text. Leta be the
next symbol (just followingv). Then we proceed that way:

¢ If wa is not in the dictionary, we write the index af to the output file, and add« to the
dictionary. We then reset to ¢ and process the next symbol (followiny
¢ If wa is in the dictionary we process the next symbol, with segmeninstead ofw.
Initially w is the first letter of the source text.

Example 7.2:
y = CAGTAAGAGAA

CAGTAAGAGAA w  written added

1 C 67 CA, 257

1 A 65 AG, 258

1 G 71 GT, 259

i T 84 TA, 260

1 A 65 AA, 261
1 A

1 AG 258 AGA, 262
1 A
1 AG

1 AGA 262 AGAA 262
T A

7.2.2 Decompression method

The decompression method is symmetric to the compression algorithm. The dictionary is recovered
while the decompression process runs. It is basically done in this way:

¢ read a code in the compressed file,
¢ write on the output file the segmemtwhich has index in the dictionary,
¢ add to the dictionary the worda wherea is the first letter of the next segment.

In this scheme, a problem occurs if the next segment is the word which is being built. This arises only
if the text contains a segmemtazax for whichaz belongs to the dictionary butza does not. During

the compression process the indexsefis written into the compressed file, anda is added to the
dictionary. Nextaza is read and its index is written into the file. During the decompression process
the index ofeza is read while the word =z has not been completed yet: the segmentis not already

in the dictionary. However, since this is the unique case where the situation arises, the segnient
recovered taking the last segmentadded to the dictionary concatenated with its first letter
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unsi gned int GET_SON(int father, int son)
{

int index, offset;

i ndex=(son<<(BI TS-8))"fat her;
if (index == 0) offset=1;
el se of f set =TABLE_SI ZE- i ndex;
while (1) {
if (dict[index].code== UNDEFI NED) return(index);
if (dict[index].father == father &&
di ct[i ndex].character == (char)son) return(index);
i ndex- =of f set;
if (index < 0) index+=TABLE_SI ZE;

Figure 7.17: Hashing function to access the dictionary.

Example 7.3:
decoding: 67, 65, 71, 84, 65, 258, 262, 65

read written added

67 C

65 A CA, 257
71 G AG, 258
84 T GT, 259
65 A TA, 260

258 AG AA 261
262 AGA  AGA 262
65 A AGAA, 263

7.2.3 Implementation

For the compression algorithm shown in Figure 7.18, the dictionary is stored in a table declared as
follows:

struct dictionary {
i nt code, father;
char character;

} dict[ TABLE_SI ZE];

The table is accessed with a hashing function (see Figure 7.17) in order to have a fast access to the son
of a node.

For the decompression algorithm, no hashing technique is necessary. Having the index of the
next segment, a bottom-up walk in the trie underlying the dictionary produces the mirror image of the
segment. A stack is then used to reverse it (see Figure 7.19). The bottom-up walk follows the parent
links of the data structure. The decompression algorithm is given Figure 7.20.
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voi d COWPRESS(fin, fout)
FILE *fin, *fout;
{
i nt next_code, character, string_code;
unsi gned int index, i;

PREPARE_WRI TE() ;
next code=FI RST_CODE;
for (i=0; i < TABLE SIZE;, i++) dict[i].code=UNDEFI NED,
if ((string_code=getc(fin)) == ECOF) string_code=END,
while ((character=getc(fin)) != EOF) {
i ndex=CGET_SON(string_code, character);
if (dict[index].code != UNDEFI NED)
string_code=di ct[i ndex]. code;
el se {
i f (next_code <= MAX CODE) {
di ct[i ndex].code=next code++;
di ct[i ndex]. father=string_code;
di ct[i ndex] . character=(char)character;
}
QUTPUT_BI TS(fout, string_code);
string_code=character;
}
}
QUTPUT_BI TS(fout, string_code);
OQUTPUT_BI TS(f out, END);
SEND_LAST BI TS(fout);
}

Figure 7.18: LZW compression algorithm.

unsi gned i nt DECODE_STRI N count, code)
unsi gned i nt count, code;
{
whil e (code > 255) {
decode_st ack[ count ++] =di ct [ code] . char act er;
code=di ct[ code] . f at her;

}

decode_st ack[ count ++] =(char) code;
return(count);

}

Figure 7.19: Bottom-up search in the coding tree.
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voi d UNCOWPRESS(fin, fout)
FILE *fin, *fout;
{
unsi gned i nt next_code, new code, old _code, count;
i nt character;

PREPARE_REAIX ) ;
next code=FI RST_CODE;
ol d_code=I NPUT_BI TS(fin, BITS);
if (old _code == END) return;
char act er =ol d_code;
putc(ol d_code, fout);
whil e ((new_code=INPUT_BI TS(fin, BITS)) != END) {
if (new _code >= next code) {
decode_st ack[ 0] =(char) character;
count =DECODE_STRI NG 1, ol d_code);
}
el se count =DECODE_STRI NG 0, new_code);
char act er =decode_st ack[ count-1];
while (count > 0) putc(decode_stack[--count], fout);
i f (next_code <= MAX CODE) {
di ct [ next _code] . f at her =ol d_code;
di ct[ next _code] . character=(char)character;
next code++;

}

ol d_code=new_code;

Figure 7.20: LZW decompression algorithm.
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Source text  French Csources Alphabet Random
sizeinbytes 62816 684497 530000 70000
Huffman 53.27% 62.10%  72.65% 55.58%
Ziv-Lempel 41.46%  34.16% 213%  63.60%
Factor 47.43% 31.86% 0.09%  73.74%

Figure 7.21: Sizes of texts compressed with three algorithms.

The Ziv-Lempel compression and decompression algorithms run in time linear in the sizes of the
files provided a good hashing technique is chosen. It is very fast in practice. Its main advantage
compared to Huffman coding is that it captures long repeated segments in the source file.

7.3 Experimental results

The table of Figure 7.21 contains a sample of experimental results showing the behaviour of
compression algorithms on different types of texts. The table is extracted from (Zipstein, 1992).

The source files are: French text, C sources, Alphabet, and Random. Alphabet is a file containg
a repetition of the lineabc...zABC...Z. Random is a file where the symbols have been generated
randomly, all with the same probability and independently of each others.

The compression algorithms reported in the table are: Huffman algorithm of Section 7.1, Ziv-
Lempel algorithm of Section 7.2, and a third algorithm called Factor. This latter algorithm encodes
segments as Ziv-Lempel algorithm does. But the segments are taken among all segments already
encountered in the text before the current position. The method gives usually better compression ratio
but is more difficult to implement.

The table of Figure 7.21 gives in percentage the sizes of compressed files. Results obtained by
Ziv-Lempel and Factor algorithms are similar. Huffman coding gives the best result for the Random file.
Finally, experience shows that exact compression methods often reduce the size of data to 30%—-50%.
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Chapter 8

Research | ssues and Summary

The string searching algorithm by hashing has been introduced by Harrison (1971), and later fully
analysed by Karp and Rabin (1987).

The linear-time string-matching algorithm of Knuth, Morris, and Pratt is from 1976. It can be
proved that, during the search, a character of the text is compared to a character of the pattern no more
than logy(|=| + 1) (Where® is the golden ratig1 4 v/5)/2). Simon (1993) gives an algorithm similar
to the previous one but with a delay bounded by the size of the alphabet (of the pattéfiancart
(1993) proves that the delay of Simon’s algorithm is even no more thatfod, |=|. He also proves
that this is optimal among algorithms searching the text through a window of size 1.

Galil (1981) gives a general criterion to transform searching algorithms of that type into real-time
algorithm.

Boyer-Moore algorithm has been designed by Boyer and Moore (1977). The first proof on the
linearity of the algorithm when restricted to the search of the first occurrence of the pattern is in (Knuth,
Morris and Pratt, 1977). Cole (1995) proves that the maximum number of symbol comparisons is
bounded by 8, and that this bound is tight.

Knuth, Morris, and Pratt (1977) consider a variant of Boyer-Moore algorithm in which all previous
matches inside the current window are memorized. Each window configuration becomes the state of
what is called the Boyer-Moore automaton. It is still unknown whether the maximum number of states
of the automaton is polynomial or not.

Several variants of Boyer-Moore algorithm avoid the quadratic behaviour when searching for all
occurrences of the pattern. Among the more efficient in term of number of symbol comparisons are:
the algorithm of Apostolico and Giancarlo (1986), Turbo-BM algorithm by Crochemore et alii (1992)
(the two algorithms are analysed in Lecroq, 1995), and the algorithm of Colussi (1994).

The general bound on the expected time complexity of string matchingg$ 0¢ |z|/|z|). The
probabilistic analysis of a simplified version of BM algorithm similar to the Quick Search algorithm of
Sunday (1990) described in the report have been studied by several authors.

String searching can be solved by a linear-time algorithm requiring only a constant amount of
memory in addition to the pattern and the (window on the) text. This can proved by different techniques
presented in (Crochemore and Rytter, 1994).

It is known that any string searching algorithm, working with symbol comparisons, makes at least
n+ %(n —m) comparisons in the worst case (see Cole etal. 1995). Some string searching algorithms
make less than/i2comparisons at search phase. The presently-known upper bound on the problem is

n+ m(n —m ), but with a quadratic-time preprocessing step (Cole et al., 1995). With a linear-time

preprocessing step, the current upper bound{'s‘”c’%lim”(n — m) by Breslauer and Galil (1993).
Except in few cases (patterns of length 3, for example), lower and upper bound do not meet. So, the
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problem of the exact complexity of string searching is open.

The Aho-Corasick algorithm is from (Aho and Corasick, 1975). It is implemented by the “fgrep”
command under the UNIX operating system. Commentz-Walter (1979) has designed an extension of
Boyer-Moore algorithm to several patterns. It is fully described in (Aho, 1990).

On general alphabets the two-dimensional pattern matching can be solved in linear time while the
running time of Bird/Baker algorithm has an additional fofactor. It is still unknown whether the
problem can be solved by an algorithm working simultaneously in linear time and using only a constant
amount of memory space (see Crochemore et al., 1994).

The suffix tree construction of Chapter 4 is by McCreight (1976). Other data structures to represent
indexes on text files are: direct acyclic word graph (Blumer et al., 1985), suffix automata (Crochemore,
1986), and suffix arrays (Myers and Manber, 1993). All these techniques are presented in (Crochemore
and Rytter, 1994).

Allthese data structures implementfull indexes while applications sometimes need only uncomplete
indexes. The design of compact indexes is still unsolved.

Hirchsberg (1975) presents the computation of the LCS in linear space. This is an important result
because the algorithm is used on large sequences. The quadratic time complexity of the algorithm to
compute the Levenstein distance is a bottleneck in practical string comparison for the same reason.

The approximate string searching is a lively domain of research. Itincludes for instance the notion of
regular expressions to represent sets of strings. Algorithms based on regular expression are commonly
found in book related to compiling techniques. The algorithms of Chapter 6 are by Baeza-Yates and
Gonnet (1992), and Wu and Manber (1992).

The statistical compression algorithm of Huffman (1951) has a dynamic version where symbol
counting is done at coding time. The codingtree is used to encode the next character and simultaneously
updated. At decoding time a symmetrical process reconstructs the same tree, so, the tree does not need
to be stored with the compressed text. The comnwoact of UNIX implements this version.

Several variants of the Ziv and Lempel algorithm exist. The reader can refer to the book of Bell,
Cleary, and Witten (1990) for a discussion on them. The book of Nelson (1992) present practical
implementations of various compression algorithms.
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Chapter 9

Defining Terms

Border: Awordu € " is a segment of a wore € >~ if « is both a prefix and a suffix af (there

exist two words, =z € Z* such thatv = vu = uz). The common length aof and: is a period ofw.

Edit distance: The metric distance between two strings that counts the minimum number of insertions
and deletions of symbols to transform one string into the other.

Hamming distance: The metric distance between two strings of same length that counts the number
of mismatches.

Levenshtein distance: The metric distance between two strings that counts the minimum number of
insertions, deletions, and substitutions of symbols to transform one string into the other.

Occurrence: An occurrence of a word € o, of lengthm, appears in a word € *, of lengthn, at
position: if: for0 < k < m — 1, ulk] = w[i + k].

Prefix: Awordu € Z* is a prefix of a wordw € Z* if w = uz for somez € Z*.

Prefix code: Set of words such that no word of the set is a prefix of another word contained in the set.
A prefix code is represented by a coding tree.

Segment: A word u € ¥* is a segment of a word € X* if » occurs inw (See occurrence), i.e.

w = vuz for two wordsw, z € Z*. (v is also referred to as a factor or a subwordodf

Subsequence: A word u € Z* is a subsequence of a worde Z* if it is obtained formw by deleting

zero or more symbols that need not be consecutiuds @lso referred to as a subword ©f with a
possible confusion with the notion of segment).

Suffix: Aword « € Z* is a suffix of a wordw € Z* if w = vu for somev € Z*.

Suffix tree: Trie containing all the suffixes of a word.

Trie: Tree which edges are labelled by letters or words.
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Chapter 11

Further Information

Problems and algorithms presented in the report are just a sample of questions related to pattern
matching. They share in common the formal methods used to design solutions and efficient algorithms.
A wider panorama of algorithms on texts may be found in few books such as:

¢ Bell T.C,, Cleary J.G., Witten |.H., 1990ext Compression, Prentice Hall.

¢ Crochemore M., Rytter, W. 1994ext algorithms, Oxford University Press.

¢ Nelson, M. 1992 The data compression book, M&T Books.

¢ Stephen G.A., 19943ring searching, World Scientific Press.

Research papers in pattern matching are disseminated in few journals, among whicbnamer-
nications of the ACM, Journal of the ACM, Theoretical Computer Science, Algorithmica, Journal of

Algorithms, S/ AM Journal on Computing.
Finally, two main annual conferences present the latest advances of this field of research:

¢ Combinatorial Pattern Matching, which started in 1990 and was held in Paris (France), London
(England), Tucson (Arizona), Padova (Italy), Asilomar (California), Helsinki (Finland).

¢ Data Compression Conference, which is regularly held at Snowbird.

But general conferences in computer science often have sessions devoted to pattern matching algorithms.

65



