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Abstract

This paper provides a survey of techniques for pattern matching in
compressed text and images. Normally compressed data needs to be de-
compressed before it is processed, but if the compression has been done
in the right way, it is often possible to search the data without having
to decompress it, or at least only partially decompress it. The problem
can be divided into lossless and lossy compression methods, and then in
each of these cases the pattern matching can be either exact or inexact.
Much work has been reported in the literature on techniques for all of these
cases, including algorithms that are suitable for pattern matching for vari-
ous compression methods, and compression methods designed specifically
for pattern matching. This work is surveyed in this paper. The paper
also exposes the important relationship between pattern matching and
compression, and proposes some performance measures for compressed
pattern matching algorithms. Ideas and directions for future work are
also described.
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1 Introduction

Computers are increasingly being used to process text, digitised images, digital
video, and various other types of data. However, the data required to represent
an image generally requires large amounts of storage space, and operations on
the data such as pattern matching are time consuming. Even the amount of
textual information typically available to the ordinary user has witnessed a
tremendous growth due to a lot of factors, such as improvements in storage
and communication technologies, widespread deployment of digital libraries,
improved document processing techniques, the world wide web, electronic mail,
wireless communication, etc. Apart from the problem of sheer size, the huge
amounts of data involved also pose problems for efficient search and retrieval of
the required information from the stored data.

Since the digitized data is usually stored using some compression technique,
and because of the problem of efficiency (in terms of both storage space and
computational time), the trend now is to keep the compressed data in its com-
pressed form for as much time as possible. That is, operations such as search
and analysis on the data (be it text or images) are performed directly on the
compressed representation, without decompression, or at least, with minimal
decompression. Intuitively, compared to working on the original uncompressed
data, operating directly on the compressed data will require the manipulation
of less data, and hence should be more efficient. This also avoids the often time-
consuming process of decompression, and the problem of storage space that may
be required to keep the decompressed data. The need to search data directly in
its compressed form is even being recognized by new international compression
standards such as MPEG-4 (Sikora, 1997; MPEG-4, 2000) where part of the
requirement is the ability to search for objects directly in the compressed video.

This paper surveys techniques that solve the two basic problems of efficiency
(in storage space and computational time) at the same time. That is, the
digitised image or text is stored and searched in a compressed format. It might
seem that compression and searching work against each other, since a simple
system would have to decompress a file before searching it, thus slowing down
the pattern matching process. However, there is a strong relationship between
compression and pattern matching, and this can be exploited to enable both
tasks to be performed efficiently at the same time.



In fact, pattern matching can be regarded as the basis of compression. For
example, a dictionary compression system might identify English words in a
text, and replace these with a reference to the word in a lexicon. The main
task of the compression system is to identify patterns (in this example, words),
which are then represented using some sort of compact code. If the type of
pattern used for compression is the same as the type being used during a later
search of the text, then the compression system can be exploited to perform a
fast search. In the example of the dictionary system, if a user wishes to search
the compressed text for words, then they could look up the word in the lexicon,
which would immediately establish whether a search will be successful. If the
word is found, then its code could be determined, and the compressed text
searched for the code. This will considerably reduce the amount of data to be
searched, and the search will be matching whole words rather than a character
at a time. In one sense, much of the searching has already been performed
off-line at the time of compression.

The potential savings are significant. Text can be compressed to less than
a half of its original size, and images are routinely compressed to a tenth or
even a hundredth of the size of the raw data. These factors indicate that there
is considerable potential to speed up searching, and indeed, systems exist that
are able to achieve much of this potential saving. For instance, compressed do-
main indexing and retrieval is the preferred approach to multimediainformation
management (Ahanger and Little, 1996; Mandal et al., 1999a), where orders of
magnitude speedup has been recorded over operations on uncompressed data
(Yeo and Liu, 1996; Adjeroh and Lee, 1997).

In this paper, we survey compression methods, especially identifying the
search techniques that they use, and how they could be exploited for search-
ing the compressed text later. We then look at pattern matching methods
for uncompressed data, to set the scene for more sophisticated systems. This
is followed by a discussion of performance measurement for compressed pat-
tern matching. The next two sections of the paper survey techniques that
have been developed for searching compressed data, which is sometimes called
compressed-domain pattern matching. The first section looks at methods for
lossless compression, where the original data is stored in a way that it can be
reconstructed exactly. The second section surveys methods where the data has
been compressed using lossy methods, which are usually used for images. A
number of techniques have been developed for these tasks; some adapt existing
compression methods, while others propose new methods that are well suited
to searching. The paper concludes with speculation on the likely directions of
future work in the area.

2 Compression methods for text and images

We begin with a brief survey of compression methods, focusing particularly
on the aspects that make compressed-domain pattern matching particularly
easy or difficult. More complete introductions to the topic of compression are



available (Cohn, 1994; Bell, 2000), and the reader is referred to textbooks for
more details (Bell et al., 1990; Salomon, 1998; Witten et al., 1999). There is
also a conference series on data compression - see (Storer and Reif, 1991; Storer
and Cohn, 1992; Storer and Cohn, 1993; Storer and Cohn, 1994; Storer and
Cohn, 1997; Storer and Cohn, 1998).

Compression methods are generally classed as lossless or lossy. Lossless
methods enable the original data to be recovered exactly, and are important for
general purpose situations. Lossless compression, sometimes called text com-
pression, is typically used for text, and to a lesser extent on images, such as
in medical imaging where exact reconstruction of the original image is impor-
tant. In contrast, lossy methods allow some deterioration in the original data,
and are generally applied in situations where the data has been digitised from
an analogue source (such as images and audio). Usually the level of deteri-
oration is near-imperceptible, yet considerable compression improvement can
be achieved because the system is not storing unnecessary detail. Many lossy
methods include a lossless method as a sub-component. For example, an im-
age compression system might transform the image to a frequency domain, and
then encode only the lower frequency components using a lossless method. Thus
techniques for lossless compression can be of relevance to lossy systems, such as
image compression systems.

Figure 1 shows a general model of the data compression process. The data
transformation stage transforms the input data into some form that will expose
the redundancies or repetitions in the data. The encoding stage (also called the
coding stage) codes the data to remove the exposed redundancies. The quanti-
zation stage is used to reduce some other forms of redundancy in the data (for
instance due to limitations of the human eye), at the expense of accuracy in the
data representation. The decompression involves doing the reverse operations
of decoding, inverse quantization and inverse transformation. The operations
before and after the quantization stage are generally reversible and hence do
not introduce any loss or artefacts in the compression. Quantization, however,
is not reversible and thus introduces some error in the compression process. In
effect, from the viewpoint of compression models, the major difference between
lossless and lossy compression is the quantization stage: lossless compression
does not involve any quantization. The quantization stage also accounts for the
huge compression ratios often achievable in lossy data compression.

COMPRESSION STAGE

'Sgtu; —>|Transformation I—:’|Quamiza1ion I—r>| Encoding

Compressed

Recon- afa
structed Inverse De- ;
Data Transformation quantization Decoding

DECOMPRESSION STAGE

Figure 1: General compression model. Small markers show the points where
compressed pattern matching can take place.



In the following sections we first look at methods that are primarily lossless,
and then lossy image compression methods are surveyed.

2.1 Text compression

Text compression is generally lossless, but results in only a modest reduction in
the data size. The general approach is to exploit different forms of redundancy
— repetitions, correlations, etc. that may occur in the text. The methods can
be grouped generally into three classes: dictionary methods (also called pattern
substitution), statistical methods, and methods based on sorted contexts. These
methods are discussed in detail below.

2.1.1 Dictionary methods

Currently the most widely used lossless compression methods are based on Ziv-
Lempel coding, which represents a variety of methods from the general class
known as dictionary coders. A dictionary method simply maintains some dictio-
nary (also known as a codebook or lexicon), and data is compressed by replacing
strings in the text with a reference to the string in the dictionary. The many
variants of dictionary coding arise from different choices for how the dictionary
is constructed, the algorithm used to search the dictionary, the rules for which
substrings in the text are replaced with a reference, and what bit pattern will
be used to represent the reference.

Static dictionary coders work with a pre-constructed dictionary. The prob-
lem of constructing an optimal dictionary is NP-complete (Storer and Syzman-
ski, 1982), although suitable heuristics are available. However, a more elegant
solution to the problem is to construct the dictionary adaptively, and this is the
main idea in Ziv-Lempel coding.

There are two main variants of Ziv-Lempel coding, those based on a 1977
paper (Ziv and Lempel, 1977) and those based on a 1978 paper (Ziv and Lempel,
1978), sometimes called LZ77 (or LZ1) and LZ78 (or LZ2) respectively.

LZ77 methods use the simple idea that text prior to the current coding point
is the dictionary, so a greedy search is performed of recent text to see if the next
few characters have occurred before, and they are then replaced with a reference
that defines how far back the match is, and how long it is.

Limpel-Ziv coding often involves some form of factorization on the input
text and the use of a suffix tree. With respect to the block diagram of Figure 1,
the transformation stage could involve the initial construction of the suffix trees
or the factorization of the input text to expose the repetitions in the text. The
coding stage essentially involves the replacement of a factor that has appeared
previously in the text with a pointer to where it appeared.

An LZ77 decoder is very fast; it maintains an array of recent text, and simply
looks up the reference in the array and copies the characters. The encoder tends
to be slower, as the previous text (usually just the last few thousand characters)
must be searched for a match. This is usually done using a hash table to index
the text, or sometimes a binary tree, linked list, or lookup table. Normally



LZT77 coders use a greedy algorithm and match the longest string that they find.
The searching for encoding could be used to save work in compressed-domain
matching by forcing the units being matched to be of relevance to later pattern
matching searches. For example, the matches could be forced to start and/or
finish on word boundaries to simplify word-based searches. This only affects
the encoding algorithm; the same decoder could be used without modification,
which has the nice property that such files could still be viewed and processed
without any changes to the viewing software.

The LZ77 approach has been used by a number of popular compression
methods, including the ZIP methods (a general purpose compression system
used in products like PKZIP and GZIP), and the system has been adapted for
an image graphics standard called PNG (portable network graphics), which is
intended to replace the widely used GIF (graphics interchange format) standard.
The better LZ77 methods use a form of Huffman coding (see Section 2.1.2) to
encode the pointers in their output.

The other branch of the Ziv-Lempel family is the LZ78 type methods. These
methods also base the dictionary on previously coded text, but the text is bro-
ken up into substrings according to a simple heuristic (usually by concatenat-
ing one character to a previously coded substring). This limits the range of
strings available for substitution, but makes encoding simpler. LZ78 methods
are waning in popularity because the LZ77 methods are now both faster and
give better compression, and also there are patent issues surrounding the use of
some LZ78 variants. However, it may be possible to adapt LZ78 methods for
compressed-domain searching again by restricting compression pattern matches
to correspond to the kind of match that will be required later. Also, the dic-
tionary contains a lot of implicit information about patterns, and pointers to
similar patterns, which could be exploited.

One of the best known variants of the LZ78 family is the LZW method (Welch,
1984), which developed into a popular public domain system called COMPRESS,
which for many years was the de-facto standard for lossless compression. The
LZW method is also the basis of the compression component of the GIF image
standard, which are widely used on the World Wide Web, amongst other places.

There are also various other proposed variants of the LZ78 family, such as
the LZMW (Miller and Wegman, 1984; Miller and Wegman, 1985), the LZAP
(Storer, 1988), etc. (See (Salomon, 1998) for more variants of the LZ77 and
LZ78 compression family). A hybrid approach between the LZ77 and LZ78
which has specific properties particularly tuned for searching on the compressed
data has also been proposed (Navarro and Raffinot, 1999). The variants differ
mainly in how they factorize the input text, how they reference the previous
occurrence of the text segments, or how they limit the amount of memory that
may be taken up by the dictionary.

More recently, a dictionary-related compression method based on antidic-
tionaries has been proposed (Crochemore et al., 2000). Here, rather than using
the words that appear as factors in the text (i.e. the dictionary) to provide
compression, the words that did not appear (the antidictionary) are used. Com-
pressed pattern matching for text compressed with antidictionaries have been



also been explored (Shibata et al., 1999b).

2.1.2 Statistical (symbolwise) compression methods

Statistical methods take a different approach to compression. Each symbol in
the input (typically a character, byte, or pixel) is coded based on its probability
of occurrence. According to Shannon’s noiseless source coding theorem (Shan-
non, 1948; Shannon and Weaver, 1949), a symbol with probability p is optimally
coded in — log, p bits.

The classic method for symbolwise coding is Huffman coding (Huffman,
1952), a method for optimally allocating short codes to more probable strings,
and longer codes to the less probable. Huffman coding was regarded for a
long time to be optimal, but this optimality only applies to codes that use a
whole number of bits. Tn the 1980s a method called arithmetic coding (Langdon,
1984; Witten et al., 1987) was developed that obtained improved compression by
“splitting the bit.” Nevertheless, Huffman coding is still very important because
in many situations it produces very good compression, with high compression
speed.

Huffman and arithmetic coding provide a method for generating a represen-
tation for symbols given their probability distribution. However, the task of
finding an appropriate probability distribution for a given text is something of
an art, and is discussed below. The probability distribution is called a model,
since it abstracts important features of the data. In a sense, the models used to
determine/generate the probability distributions perform a kind of transforma-
tion, for instance transforming the input symbols into some simple frequency
counts. Hence, for statistical methods, the transformation stage in Figure 1 cap-
tures the modelling part, while the encoding stage determines the appropriate
codes for the data using the symbol probabilities. First we describe Huffman
and arithmetic coding, which serve as the back-end for most symbolwise and
lossy compression methods. Then we look at how models can be constructed to
provide good probability distributions.

Huffman’s method for coding is based on the binary tree. An example is
given in Figure 2. This tree is for an alphabet of five characters, each with some
estimated probability of occurrence. The codeword for a particular character is
given by the path from the root to the corresponding leaf node. For example,
an “a” is coded as 000, and an “e” as “11”. The tree is generated using a simple
algorithm: the two least probable leaves are paired to form an aggregate node
which replaces the two leaves, and this pairing is applied until there is just one
aggregate node, the root. This greedy algorithm is usually implemented using
a heap to find the node with the smallest value.

The set of codewords thus forms a kind of vocabulary for the symbols in
the text. Clearly, such a vocabulary can be exploited in performing compressed
domain search on the text.

Other variants of the Huffman approach with special relevance to searching
have recently appeared in the literature. The byte-oriented word-based Huff-
man coding scheme (Moura et al., 2000; Ziviani et al., 2000) uses words and



Figure 2: Huffman coding tree for five sumbols with symbol probabilities: p(a) =
0.13,p(b) = 0.12, p(c) = 0.32, p(d) = 0.21, p(e) = 0.22

text separators (rather than individual characters) as the basic symbols in the
alphabet. Then a sequence of bytes(rather than the usual bits) are assigned to
each word or separator. The plain Huffman code uses all the bits in the bytes,
while the tagged Huffman code uses the highest order bit to tag the first byte
of each codeword. The tagging was found to be useful in searching directly on
the compressed data, because it provides random access. We also notice that
the same symbol in the Huffman code could have different bit patterns assigned
to it, as the assignment depends on how the tree is structured. This could be
a problem for searching, unless we restrict the tree structure. In practice, a
variation of the code is used called canonical Huffman codes (Hirschberg and
Lelewer, 1990). These have the same length as the traditional Huffman code,
but have their bit patterns chosen in a way that makes them very fast to encode
and decode using a lookup table rather than a tree.

Arithmetic coding also represents input characters using bits relative to a
given probability distribution. However, in arithmetic coding the representation
of consecutive symbols may overlap. One analogy is that Huffman coding can be
regarded as generating the output bit-stream by performing a SHIFT operation
on the code (to take it to the end of the current output string) and then an
OR operation (to add it to the bit-stream). In contrast, arithmetic coding uses
multiplication to move the code across, and addition to incorporate it in the
bit-stream. Thus one bit in the output may contain information about two
different input symbols, and the boundary between two symbols is not likely to
have a corresponding boundary between two output bits. The reader is referred
to the literature for the details of how arithmetic coding works (Langdon, 1984;
Witten et al., 1987; Bell et al., 1990).

With arithmetic coding, the same symbol can have quite different repre-
sentations each time it is coded. Further, because of the possible overlap in
the coding of two different symbols, decompression cannot normally start in
the middle of the compressed file. This means that it will be difficult to pro-
vide random access to the compressed data. Therefore, arithmetic coding is
generally viewed as not being very suitable for compressed-domain searching
(Baeza-Yates and Ribeiro-Neto, 1999).

Arithmetic coding certainly offers quite a challenge, because a particular



pattern need not have a particular encoding in the output, and to interpret a
particular part of the encoded file, all of the prior part of the file must be decoded
first. It is possible for particularly unusual models (such as skew probability
distributions) that the output will be predictable, but it is not clear that this
will be of use in practice. This is an area that needs to be investigated.

We now turn to models that are used for symbolwise methods. These models
provide the probability distribution that Huffman and arithmetic coders use to
create a bit-stream.

One of the simplest models is one that simply counts symbol frequencies,
and uses the relative frequency of a symbol to estimate its probability. For
example, if the symbol “u” accounts for 4 out of 200 characters then we might
estimate its probability to be 2%, and according to Shannon’s entropy formula
this should be coded in about —log, 0.02 ~ 5.6 bits. This kind of model is often
used in conjunction with Huffman coding, and is particularly effective when the
symbols being used are English words. For example, a word-level Huffman code
is used in the mg full-text retrieval system (Witten et al., 1999), as it gives very
good compression, and also the unit of coding (words) matches the unit that
will be used for searching the text later.

The simple model just described can be improved by observing that the
probability of a symbol is influenced by its context. For example, suppose
whenever the letter “q” has occurred in a text that it is followed by the letter
“u” 98 times out of 100. We can then estimate the probability of a “u” in
this context to be 98%, which should be coded in about —log,0.98 ~ 0.03
bits — considerably less that the 5.6 bits with the simple model. This is a
particularly extreme example, but considerable gains can be made by using
contextual information. This type of model is called a finite context model. The
order of the model is the number of symbols used as context; the example above
used an order-1 finite context model. Even better compression is achieved using
higher order models, but if the context size is too large then too much memory
is required to keep track of all the contexts, and also large contexts will not
have occurred very many times, and so probability estimates will be based on
unreliable samples (if any are available!)

The probabilities can either be estimated statically (by determining them in
advance, possibly from the text to be encoded), or adaptively, by keeping count
of the character frequencies during encoding, and basing probability estimates
on the counts of previously coded characters. In an adaptive coding situation,
the decoder must also keep track of the counts so that it is using the same model
as the encoder. This is not difficult because the counts are taken only from data
that has already been decoded. For adaptive models, in the limiting case, the
probabilities they generate will asymptotically approach the ones generated by
the static models.

The methods that achieve the best compression are based on finite context
models. One of the most widely known is the “prediction by partial matching”
(PPM) system (Cleary and Witten, 1984; Moffat, 1990), which uses a variety
of context sizes. To encode each symbol PPM looks for the longest context
available to code a character. Shorter contexts are needed early in the coding



when few contexts have been seen. Arithmetic coding is used to efficiently code
the probabilities, which are normally quite low. The PPM system usually uses
a trie-like data structure (Bell et al., 1990) to search for previous occurrences
of the context, looking for the longest match possible. This structure must
also be maintained by the decoder, which raises the possibility of using the
structure for compressed-domain searching. The decoding process would still
have to be performed in full (particularly because arithmetic coding is used),
but the output need not be stored, and it may be useful to keep the search
trie in memory after decoding to use as an index to perform multiple pattern
matching operations on the text.

Another kind of model used for text compression is Dynamic Markov Com-
pression (DMC), which uses a finite state automata to make probability esti-
mates for symbols (Horspool and Cormack, 1986; Cormack and Horspool, 1987).
Bell and Moffat (Bell and Moffat, 1989) have shown that these models are equiv-
alent to finite context models, but are a lot simpler to implement (although they
use a lot of resources at runtime). As with PPM, there may be some possibility
of using the finite state machine data structure to search for patterns, possibly
after a whole text has been decoded.

Klein (Klein, 2000) has suggested to improve the decompression time for
static compression schemes by extending the symbol alphabet. The idea is to
construct a meta-alphabet, which extends the standard alphabet by including
frequent words, phrases, or word fragments. The main advantage here is the im-
proved decompression time, even at the possible expense of longer compression
time.

2.1.3 Text compression by sorted-contexts

Some compression methods make use of contexts, but do this by permuting
the text so that characters that occur in similar contexts occur adjacent to
each other. This general technique is called block sorting, or the Burrows-
Wheeler transform (BWT) (Burrows and Wheeler, 1994; Fenwick, 1996a; Fen-
wick, 1996b). A large block of text is coded at a time. A list is constructed
of every character and its (arbitrarily long) context, and then the list is sorted
lexically by contexts. The characters are then transmitted in this sorted order.
This permutation of the characters has the desirable property that characters
in lexically similar contexts will be near each other, and this can be exploited
by using a coder that assigns short codes to recently seen symbols. From the
viewpoint of the general compression model of Figure 1, the permutation and
subsequent sorting correspond to the transformation stage. Remarkably, the
permuted stream of characters can be used to reconstruct the original stream.
The inverse transformation is based on the observation that the decoder can sort
the sequence of characters to get the last character of the sorted context. This
provides enough information to reconstruct the order of the original characters.

The block sorted contexts in the encoder would be an excellent index for a
pattern matching system, since only a binary search is required to locate a given
pattern, and similar patterns will be adjacent. The decoder only has limited
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information about the sorted context, but it may be possible to exploit this to
perform an initial match on two symbols (a character and its context), and then
decode only that part of the text to see if the pattern match continues.

Recently a related technique has become available, called ACB (Associative
Coder of Buyanovsky) (Salomon, 1998; Buyanovsky, 1994). This method uses
a cross between LZT77 (and LZ78) matching and the BWT sorted contexts. In
the ACB implementation, the encoder is able to generate a “context file,” which
contains dictionary information that is used for coding. It may be possible to
exploit this file for compressed-domain searching.

New results and new challenges in lossless compression can be found in a
recent special issue of the Proceedings of the IEEE, edited by Storer (Storer,
2000).

2.2 Image compression

The methods described in the previous section are lossless. Although some
lossless methods have been used for image compression (see a recent comparative
study (Memon et al., 2000)), lossy methods are more often used for images. This
eliminates storing the data needed to describe details in the image that may only
be artifacts of the digitisation process, which most humans cannot even notice.
Most image compression methods have both a lossless and a lossy mode. Some
of the methods, such as run length encoding and predictive coding, could also be
lossless. In this section we we first give a brief discussion on the nature of images,
which illuminates their special characteristics that make compression possible.
We then look at compression methods, beginning with methods that are mainly
designed for low resolution monochrome images, where lossless compression is
feasible.

2.2.1 Nature of images

An image of a surface can be viewed as a two-dimensional function of the light
intensity falling on the surface. For a given spatial location on the surface, the
image is formed from a combination of the illumination on the point, and the
surface reflectance at that point. Practically, the range of values of the function
is bounded within certain limits, called the grey-scale. The image formed in
this way is called a monochrome (or grey-scale) image, as it considers only the
intensity values. To convert to digital form, the image is digitized — both in
its spatial co-ordinates (image sampling), and in its amplitude values (grey-
level quantization). For most practical purposes, the digital image can thus be
represented as a two-dimensional array of numbers. Each element in the array
is called a picture element, or pizel.

Most natural objects come with different colours, not just as simple mono-
chrome objects. Images are thus usually represented by use of certain colour
models. The colour models used in image processing generally represent colour
information in a three-dimensional co-ordinate system, whereby each colour can
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be represented as a single point in the 3-space. Various models have been pro-
posed, and are currently in use. The particular model to use is often dependent
on the application. One such model is the RGB model, which represents the
image with three independent image planes, one for each of the three primary
colours — red (R), green (G), and blue (B). Based on these primary colours, all
other colours can be generated. The colour or grey-level value at a given pixel
position is also called the pixel value. Images where the pixels can take only
two possible values (such as 0 or 1, black or white, etc.) are called bi-level or
binary images.

For colour images, the YIQ representation is often used to represent the
colour information before compression. Thus, the RGB pixel values have to be
converted into the YIQ representation. The Y component (also called lumi-
nance), represents intensity information, while the T and Q (also called chromi-
nance) components represent information about the colour. YIQ provides a
better colour model for the human visual system (HVS), and also provides a
partial decorrelation of the colour space. For lossy compression, more bits can be
used for the Y channel, since humans are more sensitive to changes in intensity
than those in colour.

As with text, compression for images also tries to store the image using a
smaller space by eliminating some redundancies in the image. For instance,
there is always the problem of coding redundancy due to the basic scheme used
to describe the pixels, e.g. the usual colour, or grey-level representation. Since
the image represents a physical surface, neighbouring points on the image are
usually similar. Images therefore exhibit some level of spatial redundancy, which
is correlation between nearby pixels. The image could also contain very fine
details that a human is not likely to observe, due to the limitation of the human
visual system. This is sometimes called psycho-visual redundancy (Gonzalez
and Woods, 1992). The image itself might also exhibit a limited form of self-
similarity. For instance, some part of an image could be similar to some other
parts in some way. Image compression schemes aim to expose and then remove
one or more of these types of redundancies.

For lossy compression, the reconstructed image is usually not exactly the
same as the original image. Measures are then required to indicate the qual-
ity of the compression. Both qualitative and quantitative measures can be
used. Qualitative measure are based on subjective human evaluation of the re-
constructed image. Quantitative fidelity criteria used include the mean square
error and the signal to noise ratio. The quantitative measures usually depend
on some distance measure between the original image and the reconstructed im-
age. The distance is usually calculated by varying the parameter of the general
Minkowski distance.

Given two images, I1 and Iz, the general Minkowski distance between them
is given by: d,(I1, 1) = [>_,, [[1(z, y) — I2(2, y)|]"]*. With n = 1, we have the
simple city block distance, n = 2 gives the Euclidean distance. The performance
of a lossy compression algorithm is then evaluated in terms of its compression
ratio and the quality of the compression — where quality could be measured
based on both qualitative (subjective) observation and some quantitative fidelity
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criteria.

2.2.2 Run length coding for images

Run-length coding (or encoding), RLE, simply involves replacing consecutive
occurrences of the same symbol with a code that indicates what the symbol
is, and how many times it has been repeated. Although this can be used to
compress text, it produces better results when used on images. Image compres-
sion is achieved by exploiting the spatial redundancy by using run-length pairs,
for instance, along a given path in the image. It is particularly suitable for
monochrome images; for example, a scanned page tends to contain large runs
of white pixels that can be represented as just one run.

A variant of run-length coding is used in the CCITT fax standards (Hunter
and Robinson, 1980), which are currently widely used for fax machines. The
runs are assumed to alternate between black and white, and the length of runs
are encoded using a static Huffman code that was designed from some sample
documents. Such codes can be used directly for compressed-domain searching
because it is a lot faster to compare the length of runs than to compare the
individual pixels in a run.

There are also two-dimensional extensions of the basic RLE scheme. For
instance, for binary images (such as faxes), the relative address coding method
(Gonzalez and Woods, 1992) tracks the binary transitions that begin and end
each black or white runs. The distances between different types of transition on
different rows are calculated and then coded using some variable length code.
This often requires the adoption of a convention to determine the run values.

RLE is a lossless compression scheme. The output from RLE could further
be compressed by passing it as the input to a variable-length coding scheme,
such as Huffman coding. Most practical image compression schemes such as
JPEG and MPEG use RLE (and other forms of Huffman coding) during the
encoding stage.

Eilam and Vishkin (Eilam-Tzoreff and Vishkin, 1988) described the problem
of pattern matching after various transformations on the input string. Initial
ideas on pattern matching on RLE sequences were given in (Bunke and Csirik,
1993; Bunke and Csirik, 1995; Apostoloco et al., 1997). In (Adjeroh et al.,
1999) it was observed that when video sequences are represented as strings,
nearby symbols in the string are often the same or similar, resulting in long
runs of repeated (or similar) symbols. To accommodate the symbol repetition
in matching the video sequences, a special type of edit operation was defined
which works on a representation similar to the RLE.

2.2.3 Predictive image coding

Correlation between pixels implies possible predictability of the pixel values
using information from some other pixels. Spatial redundancy can be exploited
by representing the image in terms of pixel differences, rather than explicit pixel
values. Predictive lossless coding then codes only the new information using
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some symbol-encoding method. Practically, the new information (the so-called
prediction error) is the difference between the actual and the predicted value
of the pixel. The major difference between the different methods of predictive
coding is in how they determine the prediction error, for instance, the size of
the neighbourhoods they consider, or the weights they assign to the neighbours,
say based on their distance from the pixel under consideration.

The predictive techniques described in the section on lossless compression
can also be adapted to images, although predicting the colour or gray-scale of
a pixel is not so simple because we are dealing with a continuous image that
has been digitised rather than discrete characters. For example, a gray level of
143 might be predicted when it is actually 142. Practical predictive techniques
need to allow for such near misses.

The amount of compression achievable with this approach depends on how
far the entropy of the original image can be reduced by using the pixel differ-
ences. Because there is usually a significant amount of inter-pixel redundancy in
the image, this often leads to significant compression, with no loss. When lossy
compression is acceptable, further compression can be achieved by quantizing
the prediction error, before it is coded. This reduces the psycho-visual redun-
dancy, but also reduces the accuracy of the representation, and hence introduces
some error in the compression process. Generally, with more quantization, we
achieve more compression, but also introduce more error. The amount of ac-
ceptable error is usually application dependent.

The prediction of bi-level images has been explored by several authors (Lang-
don and Rissanen, 1982; Moffat, 1991). Predictive compression is used in the
JBIG standard, which is intended to replace the older facsimile compression
method for bi-level images. JBIG is now an international standard, IS 11544
(TTU-T T.82) (CCITT, 1993). The predictions are coded using an arithmetic
coder (Pennebaker et al., 1988a; Pennebaker and Mitchell, 1988), which does
not bode well for compressed domain searching. However, as for PPM, it may
be possible to exploit prediction information for searching. Also, JBIG includes
a resolution-reduction method (Yoshida et al., 1992) that is used to transmit
low quality versions of the image that can then be improved as more data is
transmitted. This raises the possibility of searching the low resolution images
for approximate matches, and then decoding the full image if it looks promising.

2.2.4 The quadtree representation

Under the quadtree representation (Samet, 1984), the image is scanned area by
area to identify the areas that contain the same pixel values. It relies on the fact
that natural images tend to contain large areas of uniform colour or grey-levels.
A quadtree represents an image as a tree, whereby each node corresponds to
some square portion of the image. The nodes in turn contain four quadrants
of the square sub-image part. The input image (the root) is divided into four
quadrants. FEach quadrant becomes a child of the root. If the quadrant is
homogeneous, i.e. all of its pixels are identical, the quadrant is represented as a
single colour, and saved as a leaf node. If the quadrant is not homogeneous, the
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quadrant is saved as a child node. Each child node is further decomposed into
quadrants, and the process continues recursively until every part of the image
has been coded, or a threshold (say in terms of the tree depth is reached).

The result is a tree structure, whereby a node is either a leaf node or contains
exactly four children. The size of the quadtree depends on the complexity of the
image. For images with large areas of identical pixels, compression is achieved
since most of the quadrants will be represented by a single pixel value. However,
for degenerate images (for instance, an image where each pixel has a different
value), ezpansion rather than compression will result - this can be avoided by
using a threshold on the height of the tree.

The quadtree partitioning could be suitable for compressed domain search,
especially, if we can determine how to split the query image to correspond to
the quadrants used for the compressed images. Its tree structure could also be
exploited for fast searching and for progressive image transmission.

The quadtree (and its 3-D extension, the octree) is typically used for lossless
data compression, for instance in medical imaging. For lossy compression, we
can use an appropriate approximation to the quadrants. That is, homogeneity
of the quadrants need not be based on equality of the pixel values. If no suit-
able approximation is found, the quadrant is partitioned further. The quadtree
representation is related to the general ideas of vector quantization, run-length
encoding, and constant area coding (Gonzalez and Woods, 1992). Tt has also
been used in fractal-based coding (Fisher, 1995).

2.2.5 Block transform coding for images

The most widely used methods for colour and gray-scale image compression are
based on block transform codes. Particular examples here are the JPEG stan-
dard (Wallace, 1991; Pennebaker and Mitchell, 1993) and the moving picture
equivalent, MPEG (LeGall, 1991). Block transform codes divide up an image
into blocks, typically 8 by 8 as used in JPEG, and code these by transforming
them into a set of frequency domain coefficients, quantising the coefficients, and
coding the quantized coefficients using Huffman or arithmetic coding. These
steps correspond to the three basic stages of image compression as shown in
Figure 1.

The transformation is typically a linear transform, and is usually reversible
(ignoring round-off errors). The transformation itself does not produce any
compression, but merely exposes the redundancies in the image, which are then
exploited by subsequent stages of the compression. For most image blocks, the
important information in the image will be packed into the first few coefficients,
usually with larger magnitudes. The remaining coefficients (usually the major-
ity) will have small values, which can be ignored, or quantized with little visual
distortion in the reconstructed image.

Most lossy compression standards, such as JPEG and MPEG use the Discrete
Cosine Transform (DCT), which is relatively fast and effective for images. Some
other transforms such as the Fast Fourier Transform (FFT), Walsh-Hadamard
Tranmsform (WHT), or Karhunen-Loéve Transform (KLT) are also used.
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Various compression methods based on the block-transform have been pro-
posed — see (Netravali and Limb, 1980; Jain, 1981; Gibson et al., 1998). The
major differences are in the particular transformation they use, the way they
quantize the coefficients (for instance, perceptually-adaptive schemes try to
quantize based on the limitations of the human visual system), how the co-
efficients are chosen and traversed, and the bit allocation policy used to assign
bits to the different coefficients.

Although block-transform coding is the predominant approach to lossy image
compression, and most images are compressed with lossy schemes, transform
coding poses a lot of difficulty for compressed domain searching. The first
problem comes with the choice of block positions and block boundaries. The
value of the transform domain coefficients depends strongly on both the spatial
position of the pixels within the transform block, and the actual value of the
pixels. Two images that are similar, but whose blocks are selected in a slightly
different manner (for instance, one image is slightly rotated, or translated) could
produce different coefficient values. Thus, there is the problem of matching two
different blocks in the transform domain, since we cannot guarantee that the
images would be perfectly registered before the transform blocks are chosen.

We have assumed in the above that the images are of the same size, or per-
haps the same with only a small affine transformation. More difficult problems
arise if the images are of different sizes, or if they are different images. This is
one of the reasons why, unlike in text pattern-matching, exact matching is usu-
ally inappropriate for images, or for multimedia data in general. This is related
to the two basic problems in image search and retrieval, which are whether we
are to search for a given object or image block within another image, or whether
we wish to compare the images on whole-picture basis (i.e., a small image block
can be compared with a much bigger image block for similarity). The choice
often depends on the application.

We can however perform approximate matching using the transform coef-
ficients, by doing some further operations on the coefficients. In general, for
image retrieval, searching is performed by use of image features extracted from
the pixels, or from their transform coefficients, rather than the exact pixel values
(or the exact coefficient values). For compressed domain search, the features
are usually computed from the transform coefficients, based on the properties
of the transformation used.

As with compressed domain text pattern matching, the reduced nature of
the data in the compressed domain has also been exploited for image and video
retrieval. For instance, the dc-image (an average image formed using only the
de coefficients of the DCT) has been used to speed up image searching in video
sequences, and is the predominant method for fast image and video browsing

(Wei et al., 1998; Ngo et al., 1998; Song and Yeo, 1999).

2.2.6 Vector quantization

Vector quantization (VQ) (Netravali and Haskell, 1988; Gersho and Gray, 1992)
is based on the concept of compression by pattern substitution. Instead of
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quantising individual pixels (scalar quantization), a VQ system creates a limited
codebook containing vectors, that is, blocks of an image, and replaces each block
with the nearest vector in the codebook. Nearness here is determined based on
certain predefined distance or fidelity criteria. It also implies that an image
block that does not appear in the codebook (a kind of vocabulary) will be
replaced by its best approximation in the codebook. This also explains why
vector quantization is a lossy compression scheme.

VQ decoding is very fast, since the decoder needs only to look up an entry in
the codebook, but encoding can be very expensive because a suitable codebook
must be determined, and then the best match for each block must be found
in the codebook. It may be possible to exploit the searching required during
VQ coding to achieve fast compressed-domain matching, since the codebook
provides a list of blocks that can be matched with the search pattern, and then
only those blocks need be extracted from the compressed domain.

Image indexing and retrieval on VQ-compressed images have been explored
in (Tdris and Panchanathan, 1997).

2.2.7 Fractal-based coding

Another form of redundancy that is often exploited in data compression is self-
similarity. That is, the image could be similar to another image at a different
scale. Natural images rarely exhibit complete self-similarity, in that, we may
not find another image that is self-similar to some other. However, they often
exhibit a limited form of self-similarity (different parts of an image could be
quite similar, subject to some similarity threshold). Fractal based compression
schemes (Fisher and Woods, 1992; Jacquin, 1992; Jacquin, 1993; Barnsley and
Hurd, 1993; Fisher, 1995) generally aim to remove the redundancy which results
from this limited self-similarity in natural images.

Fractal transformations (sometimes called iterated function systems) pro-
duce a new image by iteratively transforming (and reducing) a copy of an orig-
inal image. The transformations used are called contractive (since they always
shrink the image in some way). In the limit, after applying the transformations
infinitely many times, the result of such an iterative process will converge to
one final image, called an attractor. The new image therefore will have details
at every scale, and hence is called a fractal. The transformations used are usu-
ally affine transformations (translation, rotation, scale, shearing, flipping and
reflection), although any other contractive transform can be used.

Fractal coding is based on some intriguing and counter-intuitive properties
of such interative function systems (Fisher, 1995; Salomon, 1998):

e The attractor is independent of the precise order in which the transfor-
mations are applied.

e The attractor is independent of the weights attached to each transforma-
tion. That is, the number of times each transformation is applied does
not matter, so far as each transformation is applied at least once. (This,
however, affects the time of convergence to the attractor).
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e The final shape (i.e. the attractor) is independent of the shape of the
original image to which the transformations are applied!

Therefore, the final image depends only on the particular transformations
applied to the original object. A different set of transformations will produce a
different result. Hence, for a given attractor, the required contractive transfor-
mation is unique.

In practice, it may be difficult to find the correct transformations for real
images. Hence, the image is usually partitioned into non-overlapping parts
called ranges, which can be of any size and shape. Partitioning can be done by
simple square/rectangular blocks, using the quadtree, or some other methods,
see (Fisher, 1995). For each range, the encoder searches for an image subpart
called a domain that is the closest match to the range (subject to some dis-
tance/similarity threshold). If we know the range and the domain, the next
problem is to find the set of transformations that can map the domain into the
range. If we do this for all the ranges, we will have a set of transformations that
encodes an approximation of the image. Fractal coding is therefore lossy. Also
since we can only have an approximation (lossy representation) of the image,
the matching of the domain and the range is based on some similarity threshold.

Now, rather than storing the actual image, we store a collection of transfor-
mations as the compressed stream. That is, for each range (and the domain that
is most similar to it), we store the coefficients of the transformation required
to make the domain become very close to the range. Compression is achieved
since the number of bits required to store such coefficients will typically be less
than those needed to store the image. (For affine transforms, we require only
six coefficients for each transformation, although we might need to store some
extra information, such as the positions of the range and the domain).

If we apply more transformation steps, we will obtain a closer match between
the range and the domain, and thus less error in the compression. This will
however lead to less compression, and also to more encoding time. In general,
fractal coding is quite time consuming, since (in theory) we might need to
perform an infinitely large number of transformations. In practice, we can set a
threshold on the maximum number of steps — which directly affects the fidelity
of the compression. Other ways to speed up the encoding is by classifying
the domains and ranges based on certain criteria such as the density of edges.
Domains in the same class as the range are expected to produce the best match
for the range. Encoding time is therefore reduced by using only domains that
are in the same class as the range when searching for matches.

Conceptually, compressed image matching should be possible with fractal-
based image coding. Since the domain can be any arbitrary shape, given an
input query image, we can apply a set of transformations on an arbitrary domain
until we obtain an attractor that is close to the query pattern. Let us call the set
that produced the attractor W. Since the tranformations will be unique for any
given attractor, we can search for the query image without decompression by
just checking if the set of transformations in W also appeared in the compressed
stream.
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With the use of domains and ranges, fractal image coding also has the po-
tential of being used for object-level search for images in the compressed stream.
Although initial ideas on compressed domain searching for fractal-based com-
pression have been investigated (Zhang et al., 1995a; Zhang et al., 1995b), this
is an area that still requires further study.

2.2.8 Subband and Wavelet-based coding

Transform coding is just one type of the general frequency-domain coding tech-
niques. The general approach is to decompose the original image into different
(spatial) frequency components, with the aim of reducing the correlation in the
original data, and to pack the most important information into fewer coefficients
to facilitate compression.

Subband decomposition and the wavelet transform are two other meth-
ods that decompose the image into different components. In subband coding
(Woods, 1985; Gibson et al., 1998) the image is decomposed into different sub-
bands using different digital filters or band-pass filters. The components in
each band is then quantized and encoded differently. Usually, more bits are
allocated to those bands that contain information that are more sensitive to
human sensory perception.

Wavelet-based compression is a type of subband coding, in which the im-
age is decomposed into different bands at different resolutions (DeVore et al.,
1992; Topiwala, 1998). The idea is based on the pyramidal image representa-
tion (Burt and Adelson, 1983). At each resolution, the image is represented as
some averages and differences, called detail coefficients. The differences provide
information about important details needed for exact reconstruction of the orig-
inal image. Typically, the wavelet transform will produce one average image at
the top left corner, and smaller numbers, differences, or average of differences
elsewhere.

Compression is achieved because the differences are generally smaller than
the original pixel values. These can be compressed using any of the lossless
compression schemes, such as RLE or Huffman coding. Also, there is usu-
ally pronounced correlation across subbands (Topiwala, 1998), and this can be
exploited for further compression. Lossy compression (and hence higher com-
pression) can be realized by quantizing some of such small differences to zero.

Wavelets, subband coding and fractals are emerging methods for data com-
pression, but they generally require more computations than other methods.
Also, their performance (for instance in terms of quality of reconstructed im-
age) is not much better. However, they provide avenues for significantly higher
compression ratios, which make them good candidates for archival applications,
where searching and retrieval are important activities. As with transform coded
streams, the average image can be used for a rough query and fast browsing of
the database. More precise image searching on the compressed stream is still

difficult.
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2.2.9 Pattern matching image compression

Dictionary-based methods such as the LZ family exploit some repetition in
the text, and have traditionally been used for lossless compression. Pattern
matching image compression (PMIC) is a natural extension of the LZ approach
to lossy compression. The basis is the idea of approzimate repetitiveness (Luczak
and Szpankowski, 1994; Alzina et al., 1999) which is detected by approximate
pattern matching.

If a part of the already coded data re-occurs in an approximate sense, sub-
sequent occurrences can be coded as a direct or indirect reference to the first
occurrence. The approximate re-occurrence may or may not be continuous, and
the nature of the re-occurrence may be different for different types of data (say
images, and text). Hence different distortion measures may be required for dif-
ferent data types. The squared-error distortion measure (MSE) is often used
for images.

(Constantinescu and Storer, 1994) proposed a lossy extension of the LZ78
algorithm for use with vector quantization. The concept of waiting time was
used by (Steinberg and Gutman, 1993) to extend the Lempel Ziv algorithm to
lossy compression. Here, the waiting time is modelled as the number of symbols
before an approximate match to a string of a given length re-occurs for the first
time in the text (or equivalently, the length of the shortest string that contains
an approximate match to a string of a given length). Szpankowski and his
colleagues focused on the approximate prefix analysis for the L.Z family (Luczak
and Szpankowski, 1994; Luczak and Szpankowski, 1997), and their use in image
compression (Atallah et al., 1999; Alzina et al., 1999; Alzina et al., 2000).

The general approach to pattern matching image compression (PMIC) is as

follows (Atallah et al., 1999):

1. Choose an appropriate distortion criteria (such as the squared error or the
absolute error) to determine the match distance between strings;

2. Select some known part of the image as the database (for instance, the
last few rows or subimages);

3. Search for the longest prefix in the uncompressed image that approxi-
mately matches a substring in the database (that is, the prefix should be
within a pre-defined distance threshold from the matching substring in
the database);

4. Instead of storing the entire prefix, store a pointer to the occurrence of a
match, and the match difference.

The database and the uncompressed image can be considered either as a
1D sequence, (example, traversing the image in row-order), or as a sequence of
2D subimages. Thus, we could have one dimensional-PMIC or two-dimensional
PMIC (based on 2D pattern matching). Since the LZ algorithms have been
found suitable for compressed pattern matching, it is expected that image
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searching could be performed directly on the lossy extensions, if we take cog-
nizance of the distortion measures used during the compression stage.

It has been reported that, in terms of compression ratio and quality, the
PMIC methods are generally comparable with transform-based methods (such
JPEG), and methods based on wavelets. However, they require longer compres-
sion time, but much shorter decompression time (Atallah et al., 1999).

2.2.10 Progressive image transmission

Progressive image transmission (Anastassiou et al., 1983; Witten and Cleary,
1983; Sharman, 1992; Sharman et al., 1992) involves sending a low quality image
followed by successively more detail, so the picture gradually becomes clearer
in front of the user. This method is often used on the World Wide Web so that
the user can cancel a page early in the transmission if it is not of interest.

Some image compression standards include options for progressive image
transmission. For instance, with transform-based schemes (block-transform,
subband, and wavelet decomposition schemes), progressive transmission can be
achieved by first sending the first few coefficients (or frequency bands), and then
transmitting information from more bands progressively. Another approach is
to send the most significant bits from all the frequency coefficients first, and
progressively send the remaining bits.

Progressive image transmission raises the possibility of searching a low res-
olution version of an image, and then focusing in on “interesting” parts of the
image. For instance, if the coding scheme is based on the DCT, the dc compo-
nents can be sent initially, which will be used to form the dc image, which can
in turn be used to perform a fast appraisal or search on the image, before all
the data components arrive.

We have described the currently popular methods for image and text com-
pression. The major difference between text compression and image compression
is that the former is lossless while the later is lossy. From a modelling point of
view, this difference is primarily due to the incorporation of a quantization stage
in lossy compression. The quantization stage directly affects both the amount
of error introduced, and the amount of compression achieved. Although most
lossy (image) compression methods incorporate some form of lossless (text) com-
pression as a backend, some image compression methods are explicitly lossless
(Memon et al., 2000). Other general ideas on image compression can be found
in various published materials (Netravali and Limb, 1980; Jain, 1981; Gibson
et al., 1998; Salomon, 1998; Cohn, 1994).

3 Search strategies

Searching for patterns is an important function in many applications, for both
humans and machine. The pattern searching problem can be stated as follows:
given a query string (the pattern), and a database string (the tezt), find one
or all of the occurrences of the query in the database. The problem then is to

21



search the entire text for the requested pattern, producing a list of the positions
in the text where a match starts (or ends). In this section, we describe the
pattern matching problem, and the general methods that have been used to
reduce the time required. We also briefly describe the image pattern-matching
problem, which is more usually considered as a problem of image retrieval.

3.1 The pattern matching problem and its variants

Solving the pattern searching problem depends on a variant of the string pattern
matching problem: given two strings, determine whether they are matches or
not. Matches between strings are determined based on the distance between
them.

The distance is traditionally calculated using the string edit distance (also
called the Levenstein distance). Given two strings A : aj...ay, and B : by...by,,
over an alphabet X, and a set of allowed edit operations, the edit distance indi-
cates the minimum number of edit operations required to transform one string
into the other. Three basic types of edit operations are used: insertion of a
symbol, (¢ — a); deletion of a symbol, (¢ — €); and substitution of one symbol
with another (@ — b); (€ represents the zero-length empty symbol, and z — y
indicates that z is transformed into y). The edit operations could be assigned
different costs, using suitable weighting functions. The edit distance is a gen-
eralization of the Hamming distance, which considers only strings of the same
length, and allows only substitution operations. Computing the edit distance
usually involves dynamic programming, and requires an O(mu) computational
time.

Given a text string A, and a pattern string B, the exact string matching
problem, is to check for the existence of a substring of the text that is an exact
replica of the pattern string. That is, the edit distance between the substring of
A and the pattern should be zero. Exact pattern matching is an old problem,
and various algorithms have been proposed (Wagner and Fischer, 1974; Boyer
and Moore, 1977; Knuth et al., 1977; Sellers, 1980).

A variant of the pattern matching problem is the k-difference problem also
called approzimate string matching. The problem is to check if there exists a
substring A; of A, such that the edit distance between A; and B is less than
k. Another form of approximate matching, the k-mismatch problem, checks for
a substring of A having only a maximum of & mismatches with B. That is,
only the substitution operation is allowed. The parameter k£ thus acts as a
form of threshold to determine the correctness of a match. As with the exact
matching problem, different algorithms have also been proposed for the case
of approximate matching (Ukkonen, 1985; Galil and Park, 1990; Chang and
Lampe, 1992; Myers, 1994).

Other variants of the pattern matching problem have also been identified,
usually for specific applications. Examples include

e pattern matching with swaps (Lee et al., 1997): a transposition of two
symbols (or symbol blocks) in one of the strings is treated specially by
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using different weights;

e pattern matching with fusion (Tsai and Yu, 1985; Adjeroh et al., 1999):
consecutive symbols of the same character can be merged into one symbol,
and one symbol can be split into different symbols of the same character;

e pattern matching with don’t cares (Akutsu, 1994): a more general form
of pattern matching in which wild-card characters can be allowed in both
the text and the pattern. This is different from the usual approximate
pattern matching in that now the don’t care characters can occupy fixed
positions in the pattern (or text) as opposed to the usual case where we
have the flexibility of alignment to obtain a maximal match;

e matching with scaling (Amir et al., 1992): matching when a potential
match is a scaled version of the pattern, similar to matching with fusion;

e multiple pattern matching (Idury, 1994; Amir and Calinescu, 1996): a
generalization of the pattern matching problem, in which various patterns
can be searched for in parallel, also called dictionary matching.

e super-pattern matching: finding a pattern of patterns (Knight and Myers,
1999).

e multidimensional pattern matching (Amir, 1992; Landau and Vishkin,
1994; Giancarlo and Gross, 1997): matching when the text and pattern
are multidimensional — typically used for images (2D pattern matching)
or video (2D/ 3D pattern matching).

3.1.1 Compressed pattern matching

In general, compressed pattern matching involves one or more of the above
variants, with the constraint that, either the text, the pattern, or both are in
compressed form (Amir and Benson, 1992; Karpinski et al., 1995). Fully com-
pressed pattern matching is when the text and the pattern are both compressed,
and matching involves no form of decompression.

There is a general problem that the format used to represent the compressed
data is usually different from that of uncompressed data. More seriously, apply-
ing the same compression algorithm to two identical patterns that have different
contexts could lead to completely different representations. That is, the same
pattern located in two different text regions could result in different representa-
tions. Matching in such an environment will then have to consider the specific
compression scheme used, and how the context could affect the compression.
For lossy compression, the effect of the introduced error would also have to be
considered, and once again, the error introduced could depend on the context.

3.1.2 Applications of pattern matching

Although pattern matching is sometimes pursued for its theoretical algorithmic
significance, it also has applications in various real life problems. Traditional
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areas where pattern matching has been used include simple spell checkers, com-
paring files and text segments, protein and DNA sequence alignments (Water-
man, 1989; Rigoutsos and Califano, 1994; Chang and Lawler, 1994), automatic
speech recognition (Sakoe and Chiba, 1978; Ney and Ortmanns, 2000), charac-
ter recognition (Bunke and Sanfeliu, 1990), handprint recognition (Garris et al.,
1997), shape analysis (Tsai and Yu, 1985), and general computer vision (Tsai
and Yu, 1985; Bunke and Sanfeliu, 1990).

Recently, new applications of string pattern matching have been reported.
Examples are in image and video compression (Alzina et al., 2000), audio com-
pression (Alzina et al., 2000), video sequence analysis (Adjeroh et al., 1999),
music sequence comparison (Mongeau and Sankoff, 1990), and music retrieval.

3.2 Search strategies for text

The néive pattern-matching algorithm runs in O(mu). Tt generally ignores con-
text information that could be obtained from the pattern, or from the text seg-
ment already matched. Most algorithms that provide significant improvement
in the matching make use of such information, by finding some relationship
between the symbols in the pattern and/or text.

Fast methods for string pattern matching is an area that has long been
investigated, especially for exact pattern matching (Boyer and Moore, 1977;
Knuth et al., 1977; Crochemore and et al, 1994). The methods can be broadly
grouped as either pre-indexing, pre-filtering, or their combination. Pre-indexing
(or preprocessing) usually involves the description of the database strings using
a pre-defined index. The indices are typically generated by use of some hashing
function or a scoring scheme (Myers, 1994; Rigoutsos and Califano, 1994; Chang
and Lawler, 1994). Pre-filtering methods generally divide the matching problem
into two stages: the filtering stage and the verification stage (Owolabi and
McGregor, 1988; Wu and Manber, 1992b; Pevzner and Waterman, 1993; Chang
and Lawler, 1994; Sutinen and Tarhio, 1996). In the first stage, an initial
filtering is performed to select candidate regions of the database sequence that
are likely to be matches to the query sequence. In the second stage, a detailed
analysis is made on only the selected regions, to verify if they are actually
matches.

The performance (in both efficiency and reliability of results) depends criti-
cally on the pre-filtering stage: if the filter is not effective in selecting only the
text regions that are potentially similar to the pattern, the verification stage
will end up comparing all parts of the text. Conversely, any region missed
during the filtering stage can no longer be considered in the verification, and
hence any false misses incurred at the first stage will be carried over to the final
results. Pattern matching algorithms with sub-linear complexity have recently
been reported (Myers, 1994; Chang and Lawler, 1994). They generally combine
both pre-indexing and pre-filtering methods. For (Chang and Lawler, 1994),
sub-linearity was defined in the sense of Boyer-Moore (Boyer and Moore, 1977):
on average, fewer than u symbols are compared for a text of length u. That is,
the matching time is in O(uP) for some 0 < p < 1.
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Equivalently, fast algorithms have also been proposed for approximate string
matching. Ukkonen (Ukkonen, 1985) suggested the use of a cut-off, which avoids
calculating portions of a column if the entries in the edit distance table can be
inferred to be more than the required k-distance. Galil and Park (Galil and
Park, 1990) proposed some methods based on the observation that the diagonal
of the edit distance matrix is non decreasing, and that adjacent entries along
the row or columns differ by at most one (when equal weights of unity are used
for each edit operation). Chang and Lawler (Chang and Lawler, 1994) proposed
the column partitioning of the matrix based on the matching statistics — that
is, the longest local exact match. A general comparison of approximate pattern
matching algorithms is presented in (Chang and Lampe, 1992).

In this section we discuss methods for pattern matching in uncompressed
text. The methods used for approximate pattern matching generally make use
of techniques for exact pattern matching. Furthermore, the various proposed
fast algorithms for exact pattern matching can be traced to one or more of
the three basic fast algorithms — KR, KMP, and BM algorithms. All three
algorithms use some form of pre-processing. BM and KR also used pre-indexing
and verification. We discuss the three algorithms in some more detail in this
section.

3.2.1 Linear search

Although a simple linear search is often regarded as the least efficient method
for searching, it has some interesting variants that can perform surprisingly well.
In particular, if the access pattern to the text is known, then more frequently ac-
cessed records can be placed nearer the front, and if the probability distribution
of access is skewed this can result in very efficient searching. “Self-adjusting”
lists (Sleator and Tarjan, 1985) exploit this by using various heuristics to move
items towards the front when they are used.

This idea can be extended to compressed-domain searching by observing
that the order of the data in the compressed file might be permuted to put
frequently accessed items towards the front. For example, in an image, areas
that have a lot of detail might be more likely to be chosen. Savings can also be
made by putting smaller items towards the front, if they are likely to cost less
to make a comparison.

3.2.2 The Karp-Rabin Algorithm

The Karp-Rabin (KR) algorithm (Karp and Rabin, 1981) is based on the con-
cept of hashing, by considering the equivalence of two numbers modulo another
number. Given a pattern P, the m consecutive symbols of P are viewed as a
length-m d-ary number, say P;. Typically, d is the size of the alphabet, d = |X|.
Similarly, m-length segments of the text T are also converted into the same
d-ary number representation. Suppose the numeric representation of the :—th
such segment is T;(7). Then we can conclude that the pattern occurs in the text
if Py = Ty(i), for some i — that is, if the numeric representation for the pattern
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is the same as that of some segment of the text.

The KR algorithm provides fast matching by pre-computing the represen-
tations for the pattern and the text segment. For the m-length pattern, this is
done in O(m) time. Interestingly, the representation for each of the (u — m)
possible m-length segments of the u-length text can also be computed in O(u)
total time, by using a recursive relationship between the representations for
consecutive segments of the text. Hence, the algorithm takes O(u + m) time to
compute the representations, and another O(u) time to find all occurrences of
the pattern in the text.

A problem arises when the pattern is very long, whereby the corresponding
representations could be very large numbers. The solution is to represent the
numbers to a suitable modulus, usually chosen as a prime number. This may
however lead to the possibility of two different numbers producing the same rep-
resentation, leading to spurious matches. Hence, a verification stage is usually
required for the KR algorithm. The chance of a spurious match can be made
arbitrary small by choosing large values for the modulus. The time required
for verification will usually be very small when compared to that of matching,
and hence can be ignored. On average, the running time is O(u + m), while the
worst case is O((u — m + 1)m).

The basic KR algorithm has been extended and has been used for 2-D pattern
matching (Bird, 1977; Zhu and Takaoka, 1989).

3.2.3 The Knuth-Morris-Pratt Algorithm

The KMP algorithm (Knuth et al., 1977) simulates a pattern-matching automa-
ton. It uses certain information gained by considering how the pattern matches
against shifts of itself to determine which subsequent positions in the text can
be skipped without missing out possible matches.

The information is pre-computed by use of a prefiz function. In general,
when the pattern is matched against a text segment, it is possible that a prefix
of the pattern will match a corresponding prefix of the text. Suppose we denote
such prefix of the pattern as F,. The prefix function determines which prefix
of the pattern P is a suffix of the matching prefix F,. The prefix function
is pre-computed from the m-length pattern in O(m) time using an iterative
enumeration of all the prefixes of pip,...py, that are also suffixes of p1p; ... pq,
for any ¢,¢q = 1,2,...,m.

By observing that a certain prefix of the pattern has already matched a
segment of the text, the algorithm uses the prefix function to determine which
further symbol comparisons will not result in a potential exact match for the
pattern, and hence skips them. The average matching time is in O(m + u).

The KMP algorithm is one of the more frequently cited pattern-matching
algorithms. Tt has also been used for multidimensional pattern match (Baker,
1978) and for compressed domain matching (see Table 2).
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3.2.4 The Boyer-Moore Algorithm

Like KMP, the BM algorithm matches the pattern and the text by skipping
characters that are not likely to result in exact matching with the pattern. Like
the KR algorithm, it also performs a pre-filtering of the text, and thus requires
an O(m) verification stage. Unlike the other methods, it compares the strings
from right to left of the pattern.

At the heart of the algorithm are two matching heuristics — the good-suffiz
heuristic and the bad-character heuristic, based on which it can skip a large
portion of the text. When a mismatch occurs, each heuristic proposes a number
of characters that should be skipped at the next matching step, such that a
possibly matching segment of the text will not be missed.

The match is performed by sliding the pattern over the text, and by compar-
ing the characters right to left, starting with the last character in the pattern.
When a mismatch is found, the mismatching character in the text is called the
“bad character”. The part of the text that has so far matched some suffix of
the pattern is called the “good suffix”. The bad-character heuristic proposes
to move the pattern to the right, by an amount that guarantees that the bad
character in the text will match the rightmost occurrence of the bad character
in the pattern. Therefore, if the bad character does not occur in the pattern,
the pattern may be moved completely past the bad character in the text. The
good-suffix heuristic proposes to move the pattern to the right, by the minimum
amount that guarantees that some pattern characters will match the good suffix
characters previously found in the text. The BM algorithm then takes the larger
of the two proposals.

It is possible that the bad-character heuristic might propose a negative shift
(i.e. moving back to the already matched text area). However, the good-
suffix heuristic always proposes a positive number, guaranteeing progress in
the matching.

The bad-character heuristic requires O(m + |X|) time units while the good-
suffix heuristic requires O(m). The BM algorithm has a worst case running
time of O((u — m + 1)m + |X|). The average running time is typically < O(u +
m). Overall, the BM algorithm generally produces better performance than the
KMP and the KR algorithms for long patterns (large m), and relatively large
alphabet sizes. See (Hume and Sunday, 1991; Crochemore and et al, 1994) for
new improvements on the BM algorithm.

3.2.5 Bit-parallel Algorithms

The SHIFT-OR and SHIFT-AND algorithms (Baeza-Yates and Gonnet, 1992) are
another family of algorithms that have been proposed to improve the efficiency of
string pattern matching. These produce speed-ups by exploiting the parallelism
in the bit level representation of the characters in the symbol alphabet. The
bit-parallel algorithms have also been used in compressed pattern matching
(Navarro and Raffinot, 1999; Kida et al., 1999; Moura et al., 2000). There are
also methods based on automata theory (Cormen et al., 1990). Navarro and
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Raffinot (Navarro and Raffinot, 2000) proposed methods that combine suffix
automata and bit-parallel algorithms.

Various other algorithms have also been proposed for both exact and approx-
imate pattern matching, most of them being some modification or combination
of the above methods (Landau and Vishkin, 1988; Wu and Manber, 1992a; Wu
and Manber, 1992b; Amir et al., 1992; Takaoka, 1994; Takaoka, 1996). A more
recent survey by Hume and Sunday (Hume and Sunday, 1991) describes a more
efficient variant of the Boyer-Moore method. (Crochemore and LeCroq, 1996)
gives a brief overview of pattern-matching methods, including the BM and KMP
algorithms. The paper also discusses text compression, but not the relationship
between the compression and pattern matching.

The basic pattern matching algorithms have been extended to two dimen-
sional pattern matching (Bird, 1977), which was improved by (Zhu and Takaoka,
1989). Baker (Baker, 1978) applied string matching algorithms to character ar-
rays. The algorithms also represent the primary building blocks for compressed
domain pattern matching, see Table 2.

3.3 Search strategies for images

Recognizing patterns in static or moving images is important for many applica-
tions, including tracking moving objects, character recognition, and face recog-
nition. When exact matching is needed, it is possible to define simple functions
or statistics on the image, based on which the matching can be performed. This
could be useful when the results of image matching is to be used by a machine
— for instance for further processing (such as in robot navigation in computer
vision).

In practice, however, the result of image matching will be used by humans,
which means that human subjectivity will have to be considered. Image match-
ing is therefore typically based on similarity rather than exact matches. Issues
such as distance or similarity measures between images thus become impor-
tant. The metrics used are generally similar to those used to determine the
quantitative fidelity for compressed images (see section 2.2.1). Other problems
include the large amount of data often involved, and the huge computation that
is generally needed.

For most applications that require image matching, approximate rather than
exact matching is all that is needed. Image matching is therefore often per-
formed in terms of similarity matching. The image similarity-matching prob-
lem is similar to the pattern-matching problem. Given an image database Dy
and a target query image Q, the similarity matching problem is to report all
images in Dy that are similar to Q (i.e. all images with a similarity distance
not exceeding a given threshold). The matching is on whole-image basis and
the retrieved images are then ranked according to their similarity to the target
image. When the threshold is zero, we have exact matching. There is also a
variant of this problem, object-level image search: given a target image Q, search
within each image in Dy and report all subimages that match Q. In this case,
the searching requires a more careful description of object shapes or contours,
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and also matching within each image in the database. This distinction is often
important, as it affects the time required for the match, the method to be used
in the search, and also the quality of the results. Below, we briefly describe the
general methods that are used in image matching.

3.3.1 Template matching

Template matching (Pratt, 1991; Gonzalez and Woods, 1992), is the simplest
approach to image matching. It does a point by point comparison of the pixel
positions in the image. The target image is used as a template. After choos-
ing a suitable starting point, corresponding positions on the template and the
database image are compared point by point. The overall difference is then
added, to determine the match distance between the images.

Choosing a starting point requires the difficult problem of establishing a
correspondence between a point in the target image and the same (or similar)
point in the database image. Because of this difficulty, template matching often
involves an exhaustive consideration of each pixel position in the target image as
a candidate starting point. The match distance is then chosen as the minimum
obtained from all the starting points.

To reduce the time required for template matching, some methods partition
the images into subimages, and the comparison is performed block by block,
rather than point by point. Also, since approximate matching is often adequate,
most algorithms for image matching only perform approximate matching. These
use image statistics, such as average colour or the variance of the pixel values to
estimate the similarity between images. Others use a feature-based approach, in
which important features in the image are extracted, based on which different
images (or subimages) are matched. The features are usually based on shape,
colour, texture, or spatial information in the image. The feature-based approach
is the primary method used in image retrieval (Pentland et al., 1996; Smeulders
et al., 2000).

To further reduce the time required, some methods try to detect some im-
portant areas or points in the image (interest points), and use these to speed up
the matching. For instance, this could be done by matching only at the interest
points or regions, or by using them to prune the search for candidate matches.

3.3.2 Other search strategies for images

Conceptually, methods for 2D pattern matching could be applied to the problem
of image matching. For instance, methods for 2D approximate pattern matching
can be well suited for comparing images. One problem is often the huge alphabet
size that may be involved. For images, the alphabet size is typically the number
of colour levels in the image (usually 256 or even millions of colour levels).
Other techniques for compressed domain image matching have also been
explored. The basic idea is to define some functions using the transform coef-
ficients, based on which two images (or image subparts) can be compared for
approximate matching. The matching is often in terms of the shape, texture,
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or general intensity characteristics in the images. Generally, approximate image
matching is performed as a basic process in image retrieval. Methods for feature-
based image retrieval have been reported for DCT-based compression (Wei et al.,
1998; Ngo et al., 1998), VQ-based methods (Idris and Panchanathan, 1997),
fractal-coding (Zhang et al., 1995b), and wavelets-based compression (Mandal
et al., 1999b). A recent comprehensive survey on image retrieval can be found

in (Smeulders et al., 2000).

4 Relationship between searching and compres-
sion

As was seen in the previous sections, there is a strong relationship between
searching and compression. Some authors have considered compression as ba-
sically a pattern matching problem (Luczak and Szpankowski, 1997; Atallah
et al., 1999; Alzina et al., 2000). More generally, most compression methods
require some sort of searching:

e The Ziv-Lempel methods search the previously coded text for matches.

e PPM methods search for previous occurrences of a context using a trie
data structure to predict what will happen in the current one.

e DMC uses a finite state machine to establish a context that turns out
to have a similar meaning to the PPM context (Bell and Moffat, 1989).
This is akin to algorithms such as Boyer-Moore constructing a machine to
accelerate a search.

e VQ must search the codebook for the nearest match to the pattern being
coded.

e PMIC has to search for approximate repetition on a prefix of the un-
compressed image in the compressed part of the image. Here, matches
are defined only in an approximate sense based on a specific distortion
criterion.

e MPEG requires searching as part of its motion estimation and motion
compensation — the key aspects of the MPEG standard, as they affect
both the compression ratio and compression time. Motion estimation re-
quires a fast method to determine the motion vectors, and always involves
searching for the matching blocks withing a spatio-temporal neighbour-
hood. While the quality of the compression improves with more search
area, the compression time increases.

In (Khan and Fatmi, 1993), data compression was viewed as a pattern recog-
nition problem. Explicit considerations on the data structures used in searching
as a way of improving the compression performance have been considered in
(Bell and Kulp, 1993; Szpankowski, 1993; Constantinescu and Storer, 1994)
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The relationship between pattern matching and compression for images have
been studied in (Atallah et al., 1999; Alzina et al., 2000). More theoretical
studies on optimal and suboptimal data compression with respect to pattern
matching can be found in (Steinberg and Gutman, 1993; Szpankowski, 1993;
Yang and Keiffer, 1996; Luczak and Szpankowski, 1997). A comparative study
of pattern-matching image compression algorithms is presented in (Yang and
Kieffer, 1995)

In general, for both lossy and lossless coding, more extensive searching often
results in more compression, but with correspondingly more compression time.
For lossy compression, more search usually leads to less error in the compres-
sion (i.e. better quality in the reconstructed image). There is thus a trade-off
between the extent of the search and the compression time.

More importantly, the different searching activities may be exploited later
for compressed-domain pattern matching. In principle we need only code the
pattern to be located, and then search for the compressed pattern in the com-
pressed data. However, because coding can depend on the context of the item
being coded, this naive approach will not work. Furthermore, we may be looking
for an approximate match, and two patterns that are similar may not appear
to be similar in the compressed domain. A solution could be to constrain the
compression so that overlaps between contexts are suitable for matching. An
example here is the tagged Huffman coding used in (Moura et al., 2000).

Conversely, it is also possible to use compression for pattern matching. In
one study (Johansen, 1994), the matches used by an LZ coder are used to infer
which class an object in the image belongs to. Most image matching methods
use (pre)classification to reduce the size of the required search space.

In (Shibata et al., 1999a), byte-pair encoding (BPE) was proposed as a
compression mechanism that is specially tuned to speed up pattern matching,
while in (Manber, 1997; Shibata et al., 2000) compression was used primarily
for the purpose of improving search time, without necessarily considering the
compressio ratio or the compression/decompression time. In (Inglis and Witten,
1994) a compression method is even used as the basis for searching, and the
results of the search are in turn used as matches for a textual image compression
system. The amount of compression achieved is used to determine whether the
target data fits the model (which was trained on a template or another object
of interest). This is akin to the work in (Maa, 1993), where bar codes in an
image are recognised because of the way they compress. However, in the case of
the bar codes, the pattern being recognised just happens to induce observable
behaviour in a general purpose compressor.

In general, for a compression scheme to be suitable for compressed pattern
matching, the scheme may need to provide random access to different points in
the compressed data (this may require splitting the data into blocks and coding
blocks of data at a time), a dictionary or vocabulary of the codewords, and a
fixed code assignment for the encoded data stream. In Figure 1, we have used
markers to show the several points where a compressed domain search can take
place in the compression-decompression process.
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5 Searching compressed data: performance mea-
surement

To discuss performance issues in compressed pattern matching, it is appropri-
ate to consider performance from the viewpoint of the two main aspects of the
problem, namely, compression and pattern matching. Compression algorithms
are usually evaluated in terms of the compression ratio they can achieve, cod-
ing complexity, decoding complexity, and the extra space required during the
compression.

5.1 Performance measures for compression algorithms

The compression ratio measures how good the compression algorithm is in reduc-
ing the size of the given input data. It is defined as the ratio of the compressed
data size to the original data size; more specifically, the number of bits needed
to store the compressed data to the number of bits needed to store the original
uncompressed data. Since the traditional objective of most compression algo-
rithms is to reduce the space required to store the original data, the compression
ratio is a very important measure of compression performance.

Depending on the type of modeling or transformation used by the algorithm,
the compression ratio may not necessarily vary linearly with the original data
size. For instance, with Huffman coding, the size of the vocabulary grows slower
than the file size, since after some point, most of the codewords that are encoun-
tered would have appeared earlier in the text. Hence the amount of compression
increases with the file size. This is exemplified in Figure 3, taken from (Moura
et al., 2000). On the other hand, with LZ compressed text, the compression
ratio is practically independent of the original data size, since these typically
search only within a small window for repeated words. Without the restriction
on the window size, the compression will improve with data size, but at the
expense of higher coding complexity.

The coding and decoding complexity describe the amount of computation
required at the coding or decoding stage, as the case may be. Practically,
these relate to the speed of compression and decompression respectively. Typ-
ically, more coding complexity will be due to more extensive search during the
compression (for instance, larger search windows for LZ compression), or other
kinds of computation-intensive operations (such as lexicographic sort in BWT).
More computation and hence higher coding complexity usually leads to better
compression ratios.

Some algorithms provide symmetric complexity, in that, both the coding
and decoding complexity are the same. This is often important in on-line algo-
rithms, such as those used in modems, where the current data stream must be
processed (compressed or decompressed) before the next data stream arrives.
For some other applications, for example images in a web page, where data
could be compressed just once, but might be decompressed many times, the
symmetry may not be required and off-line algorithms may be used. Here lower
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Figure 3: Variation of compression ratio with input file size for diferent com-
pression algorithms. Figure taken from (Moura et al., 2000).

decompression times might be more beneficial, even with a higher compression
time.

The extra space criterion (Amir et al., 1996) indicates the space-complexity
of the algorithm. It shows how much memory space the algorithm will require to
store some temporary data during compression. For instance, this may be used
to store the Huffman tables, and will typically increase with increasing data
size. The block size for BWT and the size of the priming text in PPMD can be
related to the space complexity, but not necessarily in the sense of extra-space
as used in (Amir et al., 1996).

For lossy compression, an extra performance measure is the quality of the
reconstructed data. The quality is measured both qualitatively and quantita-
tively. Qualitatively, subjective perceptual criteria are used, for instance, by
empirically comparing the reconstructed data with the original data using a
human observer. Quantitative performance measures are based on different fi-
delity criteria, such as the mean square error or the signal-to-noise ratio. In
general, higher compression ratios often result in lower compression quality.

More recently, with the increasing need to access data in its compressed form
without decompression, the capability for random access to the compressed data
and the ability to support search have emerged as new criteria for evaluating
compression techniques. Table 1 (expanded from (Baeza-Yates and Ribeiro-
Neto, 1999)) shows a comparison of general lossless compression methods.

5.2 Performance measurement for pattern matching algo-
rithms

For traditional (text) pattern matching, the major performance measure is the
complexity of the matching algorithm — in terms of both time and space. In
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Performance Arithmetic Character Word Ziv-Lempel

PPM | BWT | DMC |

Measure coding Huffman Huffman
compression good poor good good very good good
ratio good
compression slow fast fast very very very very
speed fast slow fast slow
decompression slow fast very very very very very
speed fast fast slow fast slow
memory Tow Tow high moderate high high high
space
compressed no yes yes yes yes yes yes
pat. matching
random To yes yes no no no no
access

Table 1: Comparison of compression methods. Expanded from (Baeza-Yates
and Ribeiro-Neto, 1999), pp. 187. Note: for compression ratio, c.r., very good:
c.r. < 0.30; good: 0.30 < c.r. < 0.45; poor: c.r. > 0.45 .

general, with u as the text size and m as the pattern size, the worst case com-
plexity is in O(um), while some linear algorithms that run in O(u 4+ m) are
available. Algorithms with sub-linear complexity have also been reported (My-
ers, 1994; Chang and Lawler, 1994). In practice, the complexity directly affects
the system response time to user queries.

With image retrieval, the pattern matching is necessarily approximate. How-
ever, the approximation required here cannot easily be described in terms of the
usual k-distance or k-mismatches. Other measures of effectiveness, such as pre-
cision, recall and ranking are therefore needed. The precision shows how good
the algorithm is in retrieving only the correct (or similar) matches, while recall
indicates how well the algorithm can retrieve all correct matches. Once again,
for certain data types, such as images, what is correct or similar could be quite
subjective, and will depend on the application (Smeulders et al., 2000). For con-
ventional exact pattern matching algorithms in text, perfect precision and recall
are usual. However, under compressed pattern matching, however, the context
of the pattern in the text could lead to possible mis-detection of the pattern in
the text. Precision and recall could therefore be relevant in compressed pattern
matching for both lossy and lossless compression.

5.3 Performance measures for compressed pattern match-
ing

Based on the foregoing, we can enumerate some important points that can be
considered in measuring the performance of compressed domain pattern match-
ing algorithms:

o Complerity and speed: The time complexity is related to the speed of the
algorithm and shows how fast the algorithm could be. The complexity
here is only the theoretical complexity, but should reflect the speed of the
algorithm in practice.

e Furtra space: Like the time complexity, the criterion of extra space shows
the theoretical space complexity of the algorithm. It could also have a
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bearing on the amount of resources the algorithm could require, especially
for huge-volume applications, when the text or even the pattern could
be quite large. See Table 2 (Section 6) for the theoretical performance
(in terms of time and space complexity) of various proposed text-based
compressed-pattern matching algorithms.

Optimality: Tn (Amir et al., 1996; Amir et al., 1997), the concept of
optimality was introduced to the problem of compressed domain pattern
matching. Generally, compressed-domain searching is regarded as optimal
if the factor by which the search is sped up is no less than the factor by
which the text has been compressed (i.e. the inverse of the compression
ratio). (Schmalz, 1992) provides a discussion on how the speedup can be
measured. One question that arises is if the speed up can be better than
the compression ratio.

Comparison with decompress-then-search: Another way the performance
can be measured is by considering how fast the compressed pattern match-
ing is, as compared with performing the same searching operation on the
uncompressed data using existing text matching algorithms — the so-
called decompress-then-search technique. In (Navarro and Raffinot, 1999),
it was argued that, in practice, compressed pattern matching cannot be
faster than uncompressed pattern matching for some compression meth-
ods, such as LZ77. A stricter criteria would be to remove the decom-
pression time, and compare how fast the compressed-pattern matching
algorithm could be when compared with the fastest traditional (i.e. un-
compressed) pattern matching algorithm. Tf we can achieve fast searching
by using compressed domain methods for any compression scheme, one
can then take advantage of this to compress the data with the primary
objective of improving search time. (Shibata et al., 2000) suggest using
compression for this type of purpose. These issues are related to the issue
of optimality. In general, since a compressed pattern matching algorithm
will typically consider a smaller amount of data, using an optimal com-
pressed pattern-matching algorithm should be faster than doing the same
search on uncompressed data. But this may not always be the case in
practice.

Precision and recall: This will be important for searching on data that is
compressed using lossy-compression methods. Since the retrieved results
may no longer be exact matches to the original pattern, we will require a
way of knowing the effectiveness of the matching. Taken together, preci-
sion and recall can provide us with an objective way to evaluate a searching
algorithm. We note that this is not a problem in traditional k-approximate
pattern matching used in text retrieval, because the effectiveness of the
match is implicitly defined by the distance parameter k. With compressed
pattern matching, however, depending on the compression method and the
context of a given pattern in the text, it is possible that a search algorithm
could miss out an occurrence of a query pattern in the text — even for
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exact matching. Therefore, precision and recall will also be relevant in
considering compressed pattern matching for text.

e Ranking: Once again for lossy-compression, this is one other way of eval-
uating the effectiveness of compressed domain pattern matching. The
precision and recall usually do not provide adequate information on the
effectiveness of the retrieval, especially for perceptual data, such as mul-
timedia data (images, video and audio). The ranking measure will show
how well the ranking of the results produced by the algorithm compares
with those produced by a non-compressed domain matching algorithm
and/or with the ranking produced by a human observer.

e Others: There could also be other ways to check the performace. For
instance, how the method performs in other related activities, such as
data mining, which involves a series of pattern matching operations.

6 Searching Compressed Data: Lossless Com-
pression

The compressed domain pattern matching problem is to find the occurrence(s)
of a given pattern in the compressed text without decompression. Lossless
compression algorithms can typically compress files to within the range of 50%
to 20% of the original uncompressed file size, depending on which algorithm
is being used and the type of text. Theoretically, for reasonably large files,
the relative size of the compressed file should usually decrease with increasing
input file size (see Figure 3 ). In practice, for real text files, the size of the
compressed file is almost linearly proportional to the original size. Thus, a linear
pattern matching algorithm on the compressed file with a large proportionality
constant could actually perform worse than searching on the original file (Kida
et al., 1999; Navarro and Raffinot, 1999). We have noted earlier that pattern
matching can be regarded as the basis of compression. The process can be
reversed, in the sense that the compression algorithms can be designed to aid
pattern search. Manber (Manber, 1997) proposed such an algorithm for a class
of files that are searched often such as catalogs, bibliographic files and address
books. The basic idea was to substitute common bigrams of characters with
special symbols that can still be encoded in one byte. The scheme allows the
basic pattern matching algorithms to be used for fast pattern search, although
the reduction of the file size was only to about 30% of the original size. Shibata
et al (Shibata et al., 1999b) used a similar approach and used a faster Boyer-
Moore algorithm for pattern search. For the dictionary compression method
LLZ77, the algorithm can be designed to recognize certain patterns that will be
searched in the compressed data later. If one is interested in performing word-
based search in the compressed domain, the LZ77 algorithm could be made to
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put words or phrases in the dictionary that start or finish in word boundaries.
A similar approach will be applicable to LZ78 or LZW algorithms which deal
with patterns indirectly via pointers.

Compressed domain pattern matching algorithms without any constraint on
the patterns have also been proposed based on LZ families. (Amir et al., 1996)
described a method for searching LZW coded files which works in time and
space O(m? + n), where m is the size of the uncompressed pattern, and n is
the size of the compressed text. The algorithm uses a special data structure
called a dictionary trie which implicitly decodes the compressed text without
producing the output symbols. Farach and Thorup (Farach and Thorup, 1995)
described a randomized algorithm to determine whether a pattern is present or
not in LZ77 compressed text in time O(m + nlog?(u/n)), where u is the length
of the uncompressed text. See also (Kosaraju, 1995). (Barcaccia et al., 1998)
extended the work of (Amir et al., 1996) to an LZ compression method that
uses the so-called ID heuristic (Miller and Wegman, 1985). The ID heuristic
is also known as LZMW. This heuristic grows the phrases in the dictionary by
concatenating pairs of adjacently parsed phrases, rather than just adding one
character to an existing phrase. The search method is able to exploit these large
components to keep track of whether or not they contain the target pattern.
Their algorithm requires O(m + t) space, where m is the pattern size and ¢ is
the maximum target length. This is essentially optimal. However, the search
time is O(n(m + t)), where n is the size of the compressed file. This is not
as good as the “optimal” time established by Amir and Benson (Amir et al.,
1997), which is O(n + m). Navarro and Raffinot (Navarro and Raffinot, 1999)
proposed a hybrid compression scheme between LZ77 and LZ78 which can be
searched in O(min(u, nlogm) + r) average time, where r is the total number of
matches. (Karpinski et al., 1995) considered fully compressed pattern matching
for LZ coded data, where the search pattern is also compressed, and neither
are decompressed during searching. Recently, a dictionary-related compression
method based on anti-dictionary (the words that do not appear in the text)
has been proposed (Crochemore et al., 2000). (Shibata et al., 1999b) used this
idea to develop an algorithm that preprocesses a pattern of length m and an
anti-dictionary of size a@ in O(m? + a) time and then determines all occurrences
of the pattern by a linear scan of the compressed text of length n.

The LZ family of algorithms have also been used in the context of PMIC for
approximate pattern matching for lossy compression (See section 2.2.9). Manber
(Manber, 1997) has described a compression system that allows for approximate
pattern matching in the presence of errors, although the compression is lossless.

(Mukherjee and Acharya, 1994) described techniques for searching Huffman
compressed files. A simple search of the Huffman coded file to find a compressed
pattern using a fast search algorithm such as KMP will not produce correct
results. Consider the following Huffman codes: ¢ = 0,b = 10,¢ = 110 and
d = 111. Tf the text is T = abbacdabca, the compressed text will be ¢(T) =
0101001101110101100. If the pattern is P = ab, the compressed pattern is
¢(P) = 010. If we now do a pattern matching of the compressed pattern against
the compressed text, we will get three matches of which the second match

37



beginning at the third bit position from left is a false match. Furthermore, if
the pattern is of the form P = aXbY ¢c. where X is a wild-card character and Y
is a variable length wild-card character (that is, any sequence of characters of
finite length), the representation of P becomes ambiguous in compressed form
and the pattern matching algorithms (Fischer and Paterson, 1974) fail to work.

The basic idea of Mukherjee’s algorithm is to use a data structure that will
determine the byte boundaries in the variable length coded compressed text to
initiate pattern search with respect to the compressed pattern. Related VLSI
algorithms have also been published (Mukherjee and Acharya, 1995). Their
method raises the possibility of searching for part of a variable length compressed
string, even if the compressed file is only searched on byte boundaries. This is
achieved by searching for all variations of the search strings generated by starting
at different points in the string. Only eight starting points need to be considered
to cover every possible way the coded string could cross a byte boundary. Tt
seems that this idea could also be applicable to the Burrows-Wheeler transform
(BWT) (Burrows and Wheeler, 1994), as part of BWT involves sorting the
data according to context. Mukherjee and Acharya’s method (Mukherjee and
Acharya, 1994) can also be extended to handle patterns with fixed or variable
length wild card characters and to search data that has been compressed with
an adaptive Huffman code.

(Moura et al., 2000; Ziviani et al., 2000) proposed a semi-static word-based
modeling scheme for Huffman coded compressed text files which can be searched
directly at word boundaries using any fast sequential pattern search algorithm.
The coding alphabet is byte oriented and not bit oriented. The first bit of the
byte is used to mark the beginning of a word. The authors report a factor
of 2 improvement in the search time of the compressed file in comparison to
searching using the uncompressed files, and a 33% compression ratio for the
TREC 3 collection (TREC, 2000).

Compressed domain pattern matching with arithmetic coding (in its stan-
dard formulation) is not possible. This can be proved by the following counter
example: Let ¥ = {a,b,¢,d} and assume that the probabilities of these four
characters are 0.5, 0.25, 0.125 and 0.125 respectively. Also assume that the
precision of the arithmetic code is up to 4 decimal digits. Given the text
T = ababacabdbaabbacabacac and pattern P = baca, the compressed text
could be represented by ¢(7T) = [0.2874,0.9425,0.7838] where 0.2874, 0.9425
and 0.7838 are the decimal form of the arithmetic codes of the substrings
ababacab, dbaabba and cabacac respectively (concatenation of these substrings is
the text string T'), using the above set of probabilities. The compressed pattern
is ¢(P) = [0.5950], using the same statistics for the characters. Given the above
¢(T) and ¢(P), we cannot determine the occurrence of the above pattern P in
the text T, although the pattern occured at three positions of the text beginning
at the positions 4, 14, 18 respectively.

The PPM compression methods use a trie-like data structure to search for
the longest context in the portion of the text already encoded. This structure is
also built and maintained by the decoder, which raises the possibility of using
the structure for compressed domain searching. If arithmetic coding is used, the
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decoding has to be completed in full but the decoded output can be ignored.
On the other hand if Huffman coding is used or the contexts are stored in the
trie corresponding to word boundaries, there is the possibility of doing a direct
search on the compressed data. Also, the trie could be stored in memory after
decoding to use as an index to perform multiple pattern matching operations
on the text. If the file is compressed using the DMC algorithm, as with PPM,
there may be some possibility of using the finite state machine data structure
to search for patterns after the whole text has been decoded.

The BWT compression method is based on lexicographic sorting of the for-
ward context of each of its characters in the block. As such, a binary search
algorithm can be employed to locate patterns at the encoding side. The decoder
has only limited information about the sorted context, but it may be possible
to exploit this to perform an initial match on two symbols (a character and its
immediately preceding character), and then decode only that part of the text to
see if the pattern match continues. It is possible to reconstruct the block sorted
matrix at the decoder side and then perform arbitrary length pattern search.
The process has to be repeated for each block to complete the pattern search.
An inverted index file giving the blocks where the pattern may possibly occur,
might expedite the search process.

Amir and Benson (Amir and Benson, 1992) described a method for searching
two-dimensional data that has been compressed by run-length coding. An “op-
timal” version is described in (Amir et al., 1997). The general case of pattern
matching for a class of “highly compressed” two-dimensional texts is explored
by (Berman et al., 1996a; Berman et al., 1997; Berman et al., 1996b). They dis-
tinguished between compressed pattern matching, where the text is compressed,
and fully-compressed pattern matching, where both the search pattern and the
text are compressed.

Maa (Maa, 1993) considers a special case where the pattern to be located
is a bar-code. Maa observes that for the CCITT fax standard, which uses both
vertical and horizontal run-length coding, bar codes create distinctive coding
patterns, and can be detected reliably. It may be possible to extend this idea to
other types of images; for example, half tone images will compress very poorly
using run-length coding; text will have many short runs; and line drawings will
have many long runs of the same color.

Table 2 below shows the theoretical performance for various proposed algo-
rithms for compressed pattern matching, using lossless compression schemes.

7 Searching compressed data: lossy compres-
sion

If the data being searched has been compressed with a lossy method then the
pattern matching needs to be approximate to accommodate the possibility that
the target of the search may have been changed slightly by the compression
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sn Compression Search Exact | Approx. Time Space
method strategy match match complexity complexity
0 najve J J O (u) O(n + m)
T RLE dp. V4 V4 O(umg or O(nu  mme
b RLE LCS V V O(nmclog(nme)
2 u
2 LZ77 v O(nlog? () + m)
3 LZ78, LZW KMP v O(n 4+ m?) O(n 4+ m?)
or O(nlogm + m) or O(n 4 m)
P word Huffman BM, V4 V4 O(n + m) O (V1)
SHIFR-OR or O(n 4+ mVu)
5 TZ78, LZW dp- V4 V4 O(mkn + r) O(mkn + nlog n) or
O(k2n 4+ min{mkn, m2(mx)*} + r)
3 LZW Suffix trees V4 O(n + m/m log m) or
1
O(nk +m'Ta logm),a > 1
7 LZ77 v O(n 4+ m)® O(nlog? u+ n2logu
+me log log me)
B TZ77, LZ78 SHIFT-OR V] O(min{u, nlog m} + r) O(n +r)
or O(min{u, mn} 4+ r) w.c.
5 TZW SHIFT-AND | / 7 O(r +r) O(rn + m)
10 L7278, LZW BM V Q(n), O(mu) w.c. O(rn +r)
11 antidictionaries KMP Nz O(m? +a+n+r) O(m? 4 a)
12 gen. dictionary BM N O(f(d).(d+n) +n.m+ m2 +r) O(d + m?)

Table 2:

Methods for compressed pattern matching for text. See Table 3 for the
corresponding references. Key: P original pattern, P. compressed pattern, T
original text, T, compressed text, a: size of antidictionary, d: size of dictionary,
u = |T|= length of uncompressed text, n = |T.|= length of compressed text,
m = |P| = length of uncompressed pattern, m. = |P.| = length of compressed
pattern, & number of differences allowed, ¥ alphabet size, » number of occur-
rences of pattern in text, f(d) function of the dictionary, depends on the tokens
in d, d.p. = dynamic programming, LCS = longest common subsequence.

Reference |

(Bunke and Csirik, 1993; Bunke and Csirik, 1995

(Apostoloco et al., 1997

(Farach and Thorup, 1995

(Amir et al., 1996

(Ziviani et al., 2000; Moura et al., 2000

(Karkkainen et al., 2000

(Karpinski et al., 1995; Gasieniec et al., 1996

(Navarro and Raffinot, 1999

©| oo| N | Ur| x| wo| po| T | || B

(Kida et al., 1999

(Navarro and Tarhio, 2000

(Shibata et al., 1999b

(Shibata et al., 2000

)
)
)
)
)
)
(Kosaraju, 1995)
)
)
)
)
)
)

Table 3: References for Table 2
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process. Although lossy compression can be used for different types of multi-
media data (such as video, images and audio), here our emphasis is on images.
In general, approximate pattern matching for images has been studied in the
context of content-based image retrieval. Content-based retrieval is concerned
with retrieving images based on their true (visual) content, rather than by some
textual description of such content.

Like the usual pattern matching problem, the image retrieval problem can
be stated as follows: given a database of images, and a query image, find all
the images in the database that are similar to the query image. Object-level
image retrieval is a variant of this, where the objective includes finding all the
database images that contain image subparts that are similar to the query image.
In general, the image retrieval problem is mainly concerned with dermining the
following:

o The features to be used: Because of the subjective (visual) nature of image
contents, different features of the image (such as color, shape, texture, spa-
tial information, etc.) could be used in matching images. The appropriate
features to be used often depend on the particular application.

e The representations to be used: When we know the features to be used, we
will need to find appropriate representations for the features that will be
suitable for retrieval. (Chang et al., 1997) provides an overview of tech-
niques for finding images in large archives. They point out the importance
of representing the information in a form suitable for searching. Different
features require different representations, and at times, the same feature
can be represented in different ways.

e The similarity criteria: The suitable similarity criteria usually depend on
the particular feature that is being used. Sometimes, a combination of
the features (and hence various similarity metrics) will be required for
effective matching of the images.

For each feature, appropriate methods are required for their extraction, effi-
cient representation, and proper similarity matching. Recent surveys on image
retrieval can be found in (Aigrain et al., 1996; Rui et al., 1999; Smeulders et al.,
2000). Content-based retrieval systems are surveyed in (Veltkamp and Tanase,
2000).

Because of the promise of efficiency in compressed domain operations, and
since images are now typically stored in the compressed form, compressed do-
main image retrieval has attracted some serious attention and various methods
have been proposed (Ahanger and Little, 1996; Mandal et al., 1999a). The
general problem of image matching involves some form of image processing and
analysis. Schmalz (Schmalz, 1992) presented a general introduction to process-
ing compressed data. He also provided an overview of the problem of recognis-
ing patterns in compressed data (Schmalz, 1995a) and gave optical processing

methods for the problem (Schmalz, 1995b).
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Below, we use the basic compression methodologies (block-transform, wavelets,
VQ, fractals, etc.) as a guide and provide a brief survey of the reported work
on compressed pattern matching for images.

In general, the techniques use the statistics of the compressed domain coef-
ficients to form a feature vector for the database images, which are then used
for later matching with those from a query image. For instance, Chang and
his colleagues have studied various issues in compressed domain image and
video manipulations, including methods for searching, especially for DCT and
wavelet-based coding (Meng and Chang, 1996; Smith and Chang, 1994a; Wang
and Chang, 1995; Chang, 1995). In (Smith and Chang, 1994b), they computed
the mean and variance of the coefficients from the DCT blocks, and used these
to form the feature vector for the images. (Reeves et al., 1997) used a simi-
lar method, but observed that not all the DCT coefficients are very useful in
discriminating between images, and hence used the first few significant DCT
coefficients.

Lew and Huang (Lew and Huang, 1994) investigated matching in transform
block encoded images, specifically using the Karhunen-Loéve transform and the
discrete cosine transform (DCT). Li, Turek and Feig (Li et al., 1995) also inves-
tigated searching DCT coded data, but in a progressive transmission situation
where the low-frequency DCT information is searched first. Other methods for
searching on DCT-based compressed images have been reported in (Wei et al.,
1998; Ngo et al., 1998).

Zhang and colleagues (Zhang et al., 1995a; Zhang et al., 1995b) performed
texture-based image retrieval on fractal-compressed images by matching the
fractal codes. Given two images, fractal code matching is performed by com-
paring their range transformations. They looked for overlaps in the images,
since each range in an image is best approximated by a domain that lies within
the image. With fractal coding, given two identical range blocks each in a dif-
ferent image, the domain blocks that will provide the best approximation for
the two range blocks must be identical. Thus the fractal codes for the two range
blocks must be the same. If two images are identical, corresponding range im-
ages (and hence their fractal codes) will also be identical, and hence retrieval
can be performed based on the fractal codes.

For the more usual case, when the images are not identical, the images are
decomposed into smaller blocks, which are then coded as fractals. Since only
some of the ranges in a query image will match some other ranges in a database
image, they defined a matching rate, which is the number of matched transfor-
mations between two images. Similarity between images is then measured based
on the matching rate, where a higher matching rate suggests more similarity.

A slightly different approach was taken in (Sloan, 1994). Here, the query
image is combined with each image in the database to generate a synthetic im-
age via fractal coding. Using a scoring function, the generated code is analyzed
to determine to what extent the query image is described in terms of itself or in
terms of the database image. Using the score, the similar images to the query
image can be determined. The problem with this method is its huge computa-
tional complexity. For a moderately sized database, and with reasonably sized
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domains and ranges, it might take too long to generate and code the synthetic
images, and then to search for the best matching approximations.

Indexing and retrieval for VQ-coded images have been explored in (Idris
and Panchanathan, 1997). Here the indices of the codewords were defined as
labels for the images, and a histogram of the labels was then used for image
retrieval. In (Vellaikal et al., 1995), the VQ codewords were used as image
content descriptors suitable for retrieval. Oehler and Gray (Oehler and Gray,
1993) use the information available in VQ-based coding to identify tumours in
computerised tomography (CT) images, and to identify roads and buildings in
aerial images.

Because of its multiscale image decomposition capability, the subband /wavelet-
based compression schemes have been quite popular for texture-based image
retrieval. In (Chang and Kuo, 1993), images were decomposed into different
subbands, and feature vectors derived from the most significant coefficients in
the middle subbands were used for texture matching. A similar approach was
taken in (Smith and Chang, 1994b), where they used the energy of the subbands
to determine the texture features to be used for image matching. In (Mandal
et al., 1999b), a histogram of the wavelet coefficients from different subbands was
used for image retrieval. They observed that while different images could have
similar overall histograms, the statistics of the different bands are likely to be
different, and hence can be used to discriminate between images. (Manjunath
and Ma, 1996) considered Gabor wavelets, and used the mean and standard
deviation of the coefficients in each subband to differentiate between different
images. In (Wickerhauser, 1994), information from different wavelet basis was
used to investigate ways to recognise and classify images.

A comparison of fractal coding and wavelet transforms in image retrieval
is provided in (Zhang. et al., 1996); (Idris and Panchanathan, 1995) compare
wavelets and vector quantization, while (Smith and Chang, 1994b) provide a
similar comparison for wavelet-based compression and DCT for texture retrieval.
It was concluded that retrieval is generally faster on wavelet-based compressed
images than on fractal-coded images; that wavelets are better for images with
strong edges, while fractals are better for more general images; that fractals
are better suited for comparing sub-images within database images; and that
wavelet-based image coding is more suitable for texture-based retrieval than
the DCT. Fractals could thus provide a method for approaching the difficult
problem of object-level image retrieval.

We observe that the exact performance of the compressed domain image
retrieval schemes often depends on the specific features used, and on the appli-
cation. There is still no one compression technique that has proved to be better
than all the others for the different features we might want to use to retrieve
images. Some techniques have thus attempted to retrieve images when the un-
derlying compression is based on a hybrid of two or more compression schemes.
In (Idris and Panchanathan, 1995), wavelet-based vector-quantized images were
considered. The original image is decomposed using the wavelet transform and
the wavelet coefficients are then coded using vector quantization. The codebook
used in the VQ was then used as the index for later image retrieval. (Swan-
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son et al., 1996) also considered retrieving images compressed with a hybrid of
wavelets and VQ, but with some image regions coded with the DCT (the JPEG
algorithm).

Some methods for compressed-pattern matching have also been proposed
for images compressed with non-traditional coding techniques. Vasconcelos and
Lippman (Vasconcelos and Lippman, 1997) argue that a library of relevant ob-
jects can be developed during the compression of a file, so the search component
of the coding does double duty as searching later on. This principle is similar
to some compressed full-text retrieval systems where a lexicon of words is con-
structed which is used as a library for compression and also an index for full-text
searching (Witten et al., 1999). Chen and Bovik (Chen and Bovik, 1992) pro-
posed a system that attempts to code sub-images that are “meaningful to a
normal human observer.” Their system is called visual pattern image coding
(VPIC). A similar approach was taken by Gerek et al (Gerek et al., 1996),
who developed a textual image compression system that is able to search the
compressed data.

A more unusual form of lossy compression is the signature file (Harrison,
1971), which has been popular in text information retrieval systems. A “sig-
nature” is created for each document or record using hashing, and a simple
probabilistic test can be used to find possible matches of a search key with a
signature. This is a specialist system, and allows complex queries including
boolean combinations of terms. The signatures are not intended to be decom-
pressed (in fact, the system is not really touted as a compression scheme).

8 Directions for further research

So far, we have surveyed research on different aspects of the problem of search-
ing on compressed data. In this section, we speculate on what is likely to pre-
occupy researchers in this field in the short term and in the long run. The short
term concern will be mainly on problems that deserve immediate attention, or
those that can build on existing ideas, while the long term research direction
might question some of the current approaches used in pattern matching, com-
pression, or compressed pattern matching. Below, we describe these research
activities under six subheadings: new compressed pattern matching algorithms,
new compression algorithms, new applications, integration and adaptation, and
hardware implementation.

8.1 New compressed pattern matching algorithms

Compressed pattern matching is a relatively new field. The next obvious step is
to make incremental improvements on some of the currently proposed methods,
for example, making them faster or to use less extra space. However, although
the focus has been mainly on a few compression methods (such as Huffman cod-
ing and LZ compression for text, or the RLE and DCT for images), algorithms
are still required for pattern matching on other/new compression algorithms.
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For instance, a few methods have been proposed (Shibata et al., 1999b) for
searching text compressed using schemes such as antidictionaries (Crochemore
et al., 2000). But we are yet to see algorithms that search on data compressed
with block-sorted contexts such as BWT. Because the performance measures
could be different when searching is considered, algorithms that may not be
very good on compaction and coding complexity could provide better perfor-
mance for searching.

In the long run, researchers will still be looking for possible solutions to
some currently hard questions. For instance, can there be some variations on
arithmetic coding that will make it possible for compressed pattern matching?
How can we perform precise image searching directly on compressed data? How
can we make new compression algorithms (such as wavelets and fractals) faster,
which will make them more generally attractive for multimedia data compres-
sion, and hence more important for compressed pattern matching in images or
video?

Further, current algorithms have focused mainly on the basic pattern-matching
problem (exact or approximate pattern matching). However, in the short term,
there is a need to start looking into compressed solutions to the other variants
of the compressed pattern-matching problem, especially those with immediate
applications. For instance, compressed multidimensional pattern matching will
find use in new applications, such as multimedia data analysis, while compressed
solutions to the dictionary matching and super pattern-matching problems will
be of interest to researchers in data mining. In the long term, we expect some
compressed solutions to the more theoretical variants of the pattern-matching
problem, such as pattern matching with don’t cares.

Although searching on compressed data is inherently more efficient than on
uncompressed data, the use of parallel algorithms can provide further efficiency
improvements. Parallel algorithms have been proposed for the traditional pat-
tern matching problem (Galil and Giancarlo, 1997; Giancarlo and Gross, 1997).
We envisage similar efforts in developing parallel compressed pattern match-
ing algorithms, for both text and images. There are two obvious ways to do
this: either develop parallel versions of existing compressed pattern matching
algorithms, or to develop analogous compressed pattern matching versions for
currently available parallel pattern matching algorithms.

For images, the main attention has been on DCT-based compression schemes,
perhaps due to the availability of DCT-based standards, such as JPEG and
MPEG. Very little has been done on searching on images compressed with other
techniques, such as the subband decomposition techniques or fractals. Yet some
of these emerging image compression methods (such as fractals and wavelets)
have shown promise for huge compression ratios, which make them candidates
for archival applications, or typical multimedia environments. Further, other
schemes (such as quadtrees and fractals) could provide ideas for addressing the
difficult problem of object-level searching in compressed images. Already some
of these have been found to be particularly suitable for searching based on par-
ticular image features. With the success of whole-image approximate searching
using DCT based features, we anticipate more effort in developing equivalent re-
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trieval algorithms for images that are compressed with these emerging schemes.

The harder question is the problem of precise search on images — whether on
compressed or non-compressed images. For compressed images, matching has
generally been approximate, since the compression is usually lossy. Thus, initial
attempts to this problem will have to look at developing pattern-matching al-
gorithms for lossless image compression schemes, such as JPEG-LS (the lossless
version of JPEG (Weinberger et al., 2000)). Further, with the increasing impor-
tance of applications for lossless image compression (such as medical imaging),
researchers will start to look at the problem of developing equivalent algorithms
that can search directly on lossless compressed images.

8.2 New search-aware compression algorithms

Already there have been proposals for search-aware compression algorithms —
that is, compression schemes designed with search in mind (Manber, 1997; Shi-
bata et al., 1999b). We envisage that this trend will continue, especially with
the increased demand for “compress-once, search-many” applications, such as
digital libraries, and multimedia databases. In this situation, the ability to
support later searching becomes a performance criterion used to measure the
algorithms.

Image compression schemes have, however, not generally considered the
problem of search at the compression stage. This is bound to change. Already,
as part of the compression process, some image compression methods provide
useful by-products, (such as code vocabulary (e.g. VQ) or data structures (e.g.
PMIC)), which can be exploited later to search the compressed data. Also, for
images, object-level search (i.e. within-image search for objects) has posed a
serious problem and has been largely ignored. The major issue has been how to
describe the shape boundaries in the transform domain. New coding methods,
such as the shape-adaptive DCT-based schemes (Sikora et al., 1995) open up
the possibility of now describing object boundaries as part of the compression.
New standards such as MPEG-4 and MPEG-T are also considering issues related
to object-level access in the compressed data (Zhang et al., 1997; Sikora, 1997;
MPEG-4, 2000).

In general, new multimedia compression algorithms are expected to take the
issue of searching directly on the compressed data more seriously. In the least,
new search-aware compression algorithms that are tuned for special applications
where searching is a key issue (such as web-based applications, digital libraries,
multimedia databases) are expected in the near term for lossy compression. In
the long term, we expect a similar development for lossless image compression.

8.3 New applications

Traditionally, pattern matching (especially exact-pattern matching) has been
used mainly in text-based environments. New applications, such as image re-
trieval has motivated the need for approximate pattern matching for images.
But the simple problem of exact matching is yet to be solved for images, due

46



to the difficult question of image registration. Notwithstanding this, we still
envisage that emerging applications, such as web-based information retrieval
(Kobayashi and Takeda, 2000), digital libraries, and multimedia information
systems will drive the need for compressed pattern matching in new application
environments involving different data types.

This will particularly be the case for applications that require access to
multimedia content, where the large data sizes typically involved still make
efficiency considerations a major issue. Another instance here is the potential
impact of solutions to the problems of super-pattern matching or dictionary
matching on new applications, such as data mining. More generally, in the
long term, the development of compressed pattern matching algorithms will
encourage the drive for some new application areas, which have so far been
thought to be too time consuming.

8.4 Performance measures

The performance measure for new search-aware compression algorithms will
include the capacity for explicit search support, along with the traditional mea-
sures of data compaction, complexity, and quality (in the case of lossy com-
pression). Short-term problems here include the development of benchmark
databases for testing the various algorithms. There are already a number of
standard databases for testing text compression algorithms (CanterburyCorpus,
2000; CalgaryCorpus, 2000), or for text-based retrieval systems (TREC, 2000).
A similar benchmark for evaluating algorithms that search directly on com-
pressed images requires immediate attention. Further, we have enumerated a
number of parameters based on which compressed pattern-matching algorithms
can be evaluated. In the long run, researchers might also need to re-examine
these and the current measures, possibly, with a view to developing application-
specific measures of performance.

8.5 Integration and Adaptation

Most environments will involve data corpora that are compressed with different
compression schemes. This is currently typical of web-based applications, and
the number of such applications is bound to increase in the future. One problem
will be how to perform search transparently on the different data formats or data
types.

In the long run, we envisage a proliferation of compression schemes (and
hence different methods to search on them directly), and the availability of
different search techniques on the same compression algorithm. Moreover, for
image matching algorithms, there is the possibility of missing the occurrence of
the query image in the database, or returning wrong results altogether. When
we consider all these, along with the different performance criteria (some of them
opposing to each other), the obvious question will be how to make compressed
pattern matching to be adaptive.
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Adaptation could be in different forms. For example, in the choice of the
compression scheme — for instance, based on the perceived future search activ-
ities on the data and/or the matching algorithm that will be adopted; choice
of the particular compressed pattern matching algorithm to use — for instance,
based on the weights attached to the different performance measures; the use of
a hierarchy of search algorithms (especially for image matching algorithms) —
akin to the idea of metasearch used for web search engines (Silberg and Etzion,

1997; Lawrence and Giles, 1998).

8.6 Hardware implementation

In parallel with the development of compression algorithms, very large scale
integrated (VLSI) technology has made tremendous strides and opened up the
possibility of implementing a system-on-chip (SoC) to perform real-time data
compression functions over mobile and network based communication channel.
Several papers have appeared in the literature (we mention only a small subset
of these here) to perform hardware data compression. The basic operation of
the LZ algorithm is a string matching operation. Hardware architectures for this
are based on content-addressable memory (CAM) (Jones, 1992; Lee and Yang,
1995; Craft, 1998; Lin and Wu, 2000), linear systolic arrays (Ranganathan and
Henriques, 1993; Jung and Burleson, 1998; Chen and Wei, 1999) and recon-
figurable field programmable gate arrays (FPGAs) (Nunez et al., 1999; Huang
et al., 2000). Hardware algorithms for Huffman and arithmetic compression
have also been proposed by several authors (Pennebaker et al., 1988b; Arps
et al., 1988; Mukherjee et al., 1991; Mukherjee et al., 1993) (Mukherjee and
Acharya, 1995; Jiang, 1995; Liu et al., 1995; Parhi, 1992; Park et al., 1995;
Freking and Parhi, 1999).

Several hardware architectures have been reported for DCT, JPEG, MPEG
and wavelet based image compression, run-length encoding and move-to-front
encoding. The references are too numerous to mention here.

With regard to hardware for compressed domain pattern search, only a few
papers appear in the literature (Mukherjee and Acharya, 1995; Ercal et al., 2000;
Wilson et al., 2000). Future work on hardware algorithms for data compression
could be directed towards implementing some of the better performing lossless
algorithms like BWT, PPM and DMC, and development of higher speed video
and image compression hardware. Development of compressed domain pattern
matching both for lossless and lossy compression algorithms will be an exciting
challenge for future work.

9 Conclusion

In this paper, we have surveyed recent and past efforts in searching reduced
(compressed) text and images. We outlined the basic concepts and assumptions
used in data compression and in pattern matching. The paper also identified the
special relationship between data compression and pattern matching (search-
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ing). It was observed that searching is an important aspect of compression,
while on the other hand, compression can be used to improve later searching.
Algorithms that search directly on lossless compressed data have focused mainly
on Huffman codes and the LZ family of coding algorithms. Searching on lossy
image compression has generally been in the context of image retrieval, and
generally on an approximate basis, with emphasis on transform-coded images.

The paper proposes six measures of performance for compressed pattern-
matching: complexity and speed, extra space, optimality, precision and recall,
ranking, and comparison with decompress-and-search algorithms. We specu-
late that in the future, short term and long term trends in compressed pattern
matching will focus on important aspects of the problem: new compressed pat-
tern matching algorithms, new search-aware compression algorithms, develop-
ment of new applications, performance measures and benchmarks, adaptation
in compressed pattern matching, parallel algorithms and hardware implemen-
tation.
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