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Abstract

This paper discusses the potential use of Processing-In-
Memory (PIM) Technology in petaflops level
computing. It starts with a quick review of a proposed
PIM architecture called Shamrock, and follows that up
with a discussion of several execution models that the
architecture supports. Sizings for a petaflops-level
machine constructed solely from PIM devices at
several points in time are given. This is then projected
to how PIM architectures will play a pivotal role in the
recently initiated HTMT (Hybrid Technology Multi-
Threaded) petaflops system architecture project.

Intr oduction

A peta(fl)ops is 1015 operations per second, which is a
thousand times faster than the fastest computer
demonstrated to date. While the advent of petaflops-
level computing would revolutionize a broad range of
application areas, the pursuit of a petaflops itself calls
for revolutionary ideas in the areas of algorithms,
software, and architectures.

To place the problem in perspective, we consider the
development of a petaflops system using conventional
technologies. Fig. 1 is a roadmap showing the memory
and CPU chip count needed to realize a petaflops-level
system, assuming one byte of memory per op, for a
total of one petabyte. Based on SIA projections [2], to
build such a system in 1998 would require over 30
million chips, of which 99 percent would be memory.
By 2010, however, according to SIA projections,
“only” 200K chips would be needed, with two memory
chips per CPU. This in turn gives rise to a number of
problems. First, hiding the latencies in such a system
requires a high degree of multithreading and hence
parallelism. In addition, the high-performance
processors assumed at the time (16-way issue, 1.1
GHz) would require huge bandwidth from few memory
parts.

Paradoxically, increasing memory density reduces the

number of memory parts required to achieve a given
memory size, which makes the bandwidth problem
between CPUs and memory worse. For example, using
a “gigaflops to the 3/4 power” rule [20] (typical of 3D
plus time simulation problems) results in 2010 systems
with 1 DRAM part for approximately 15 CPUs. To say
that this requires a near-perfect cache hierarchy is an
understatement.

Processing-In-Memory (PIM) technology combines on
a single CMOS chip both logic and memory. This
simple trick has a profound impact on computer
architecture: the CPUs are much closer electrically to
the memory arrays containing instructions and data,
and the number of bits available from each access can
be literally orders of magnitude greater than what one
can transfer in a single cycle from today's conventional
memory chip to today's conventional (and separate)
CPU chip or cache system. Together, this greatly
reduces memory latency and greatly increases memory
bandwidth—the twin demons of modern computer
design.

The result is that PIM gives the potential for doing
away with much of the expensive memory hierarchy
present in modern design, and replacing the CPU cores
with simpler designs. It also allows for additional high
performance techniques such as vector or SIMD
processing to be placed inexpensively directly next to
the memories where full use of the local bandwidth can
be achieved. The result is less power, less silicon, and
less complexity—which then allows us to place
multiple such nodes on the same chip—providing even
more performance per square of silicon by eliminating
the need for complex inter-CPU communications
paths. This is essential for petaflops levels of
performance.

A series of papers, especially [3 and 17], summarize
the state of PIM technology today [12, 13, 18].
Projections of what PIM-based high-performance
computers might look like over the next twenty years
are discussed in [9, 10, 11, 12, 20]. Estimates done for
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Figure 1. Petaflops sizing
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the Frontiers' 96 conference [10] found that using 2004
technology, a 100 TF system with 1 TB of memory
would utilize 5,800 PIM chips, each with 74 nodes per
chip. In the same time frame a 100 TB system would
employ 26,000 16 node chips. In either configuration
each node would be capable of about 0.25 GF—
considerably simpler than the potential CMOS
workstation CPUs of the same era. In 2010 technology,
a 1 TB system would employ 1,400 680-node chips,
and a 100 TB system would employ 16,234 56-node
chips, where each node now has a peak of about 1 GF.

Despite the gains possible by an all PIM petaflops-
level machine, it still appears that such machines, even
with the best of CMOS technologies, will require the
programmer to deal with multi-million way
parallelism. Many real applications may not permit
such huge levels of parallelism. To attack such
problems, a large scale collaboration among several
research groups—the HTMT project [1, 5, 19]—is
focusing on a mixed-technology solution where
extremely long latencies are possible, and where “pre-
emptive” activity in the PIM-based memory are
essential to reduce or eliminate the latency penalties.

This paper takes one such proposed PIM architecture,
Shamrock, and discusses a possible architecture for a
petaflops machine based on it, along with execution
and programming models to match such PIM
components. The HTMT architecture is then
introduced briefly, followed by a description of how

specific PIM functions are essential to it.

Shamrock

Shamrock [8, 9, 10, 11], is the name that we have
given to the result of a study into how to best “tile” the
surface of a CMOS chip with repeating patterns of
logic and memory areas that efficiently scale into a
large, parallel computing chip. Fig. 2 illustrates the
Shamrock floorplan. The basic premise is to start with
a node that consists of logic for a CPU and data routing
in the center, and four arrays of memory next to it, two
on the top and two on the bottom. Each memory array
is made up of multiple sub units, much as current
memories are. However, the sense amplifiers for such
memories, rather than face some multiplexing logic
which strips away all but a handful of the bits at each
access, face directly the CPU logic. This allows ALL
the bits read from a memory in one cycle to be made
available at the same time to the CPU logic.

Also key is that we have two separately addressable
memories on each face of the CPU. When we tile the
surface of a chip with such nodes, we arrange them in
rows, but stagger alternating rows so that the two
memory arrays on one side of one node impinge
directly on the memory arrays of two DIFFERENT
nodes in the next row. The result is a structure where
each CPU has a true shared memory interface with four
other CPUs, with the interface at the full width of the
memory. Finally, all of this is done without expensive
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Figure 2. Shamrock floorplan
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and space consuming global wires.

As shown in the chip floorplan in the lower-left corner
of Fig. 2, off-chip connections come in two forms, both
of which enhance scalability. First, peripheral contacts
abut the top and bottom edges of the array of tiled
nodes, from which connections can be made with
adjoining chips in a way that maintains the tiled
topology. Second, down the center of each logic strip is
a global memory bus, with peripheral contacts on the
left and right sides of the chip, that allows a processor
on the outside to view the chip as “memory” in the
conventional sense. Again, both of these connections
stem naturally from the topology of the individual
nodes, and do not require any expensive additional
wiring on the chip.

The HTMT System

The Hybrid Technology Multi Threaded (HTMT)
project [1, 5, 19] is a collaborative project among about
half a dozen research groups (Cal Tech/JPL, U.
Delaware, SUNY Stonybrook, Notre Dame, Princeton,
plus an association with many other government and
industrial labs) to define a system that can reach a
petaflops level of performance in significantly less
time than projected CMOS trends would allow. The
current HTMT baseline attempts to avoid the multi-
million way parallelism problem by a mix of
technologies starting with perhaps 10,000 CPUs

constructed from RSFQ (Rapid Single Flux Quantum)
superconducting technology running at several hundred
GHz, each with a small amount of local cryogenic
RAM (CRAM). Because such technologies are
inadequate for the system memory densities needed,
HTMT has included two layers of memory above these
devices: an SRAM and a DRAM layer, as shown in
Fig. 3. Interconnecting the two are high speed optical
networks. The DRAM layer then connects to other
memory subsystems, including a 3D holographic
storage subsystem and a huge disk farm.

In such a system, memory latency from the RSFQ
CPUs down to the lower levels of the memory
hierarchy becomes even more paramount than today,
with cache miss penalties of hundreds of thousands of
cycles possible if the system is architected
conventionally. Instead, adopting PIM technology at
both the SRAM and DRAM levels of the hierarchy
allows systems where the memory takes pre-emptive
action to prevent misses from occurring.

General PIM Execution Models

An execution model for a machine is a view of how
programs execute on that machine. For Shamrock-like
PIMs at a high level there are at least three such
models that have been investigated, including: 1) an
“accelerator model” where the PIMs act as a memory-
resident “coprocessor” to one or more conventional
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Figure 3. HTMT architecture
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CPUs, 2) a “massively parallel peer” model where
there is no host, only PIM chips, 3) a latency
enhancing “active memory management” model where
the PIMs are responsible for explicit management of
the memory hierarchy of a supercomputer. The first
two of these models are described [8]; the active
memory model is most relevant to HTMT and is
discussed below.

The Active Memory Model (AMM) represents a
radical departure from both conventional models and
the other two PIM models, and directly addresses the
issues of run away memory latencies in very high
speed systems such as HTMT. This model assumes a
“conventional” arrangement of main memory
connected through potentially several layers of
intermediate storage to very high speed CPUs, such as
RSFQ superconducting devices.

In such systems a cache miss from the lowest levels
may result in miss penalties of literally hundreds of
thousands of machine cycles. For obvious reasons we
really want this to NEVER HAPPEN. The AMM
model attacks this by assuming that the main memory,
and potentially lower levels of memory in the
hierarchy, are PIM-enhanced. This local processing
capability then allows two capabilities which directly
attack the latency problems. First, as in the accelerator
model, a wide variety of functions can be done directly
IN THE MEMORY, and never have to leave the
memory for a tortuous trip to the main CPU. Such

activities as initializing and performing simple vector
operations on matrices all fall in this category. More
interesting, memory local functions can also enhance
the I/O capabilities of such a system. Compression,
decompression, graphics generation, and the like can
be performed on data directly as it is rolling between
memory and I/O devices. This can hugely increase the
apparent bandwidth (and storage density) of the I/O
devices, without involving RSFQ CPU functions at all.

A second, and more direct, approach to latency
reduction is to allow the PIM-enhanced memory to
respond to a cache miss, or “prefetch instruction” from
the main CPUs in more complex ways. Complex
gather/scatter operations can respond to one request
with the collection of data from all over memory into a
single contiguous unit which fits within the lower
levels of the memory hierarchy and enhances locality
of accesses to them. (A striking example of this can be
found in the SMC functions described in [16]).

Further, if two or more levels of the memory hierarchy
are also PIM-enhanced, then it may also pay to employ
compression and decompression in the transfer of data
between levels of the hierarchy, enlarging the apparent
bandwidth of the connection, and thus reducing again
the apparent latency of the memory.

Finally, in the ultimate expression of latency reduction,
the PIM-enhanced memories can do more than simply
respond to requests. They can perform “preemptive
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strikes” which gather data (and code) together in
contiguous packets for transmission down the
hierarchy IN ADVANCE of requests from the main
CPUs. In a sense this allows the PIMs to manage the
transfer of data between spaces independently from the
executing programs. A variety of potential
programming models to achieve this split have been
identified and are discussed below.

General PIM Programming Models

There are also multiple ways in which a programmer
can approach the process of developing code for a PIM-
based computer. Some of these map well onto only a
single execution model. Others are suitable for several
such models, and may in fact be invoked within the
same program. Each is discussed briefly below.

Static Library Model

In this model, program access to the PIM is through a
library of pre written functions. Arguments include
pointers to the memory areas holding the operands, and
the memory areas where the results should go. This is a
good match for either the accelerator or the AMM
model of execution, and allows virtually any
programming language to access PIM functions
without special compilation techniques. Relatively
small runtimes are needed in each node (just enough to
initialize a library function and handle exceptions), and
the libraries themselves can be designed for
compactness. In the EXECUBE PIM [13] such a
runtime support package was extremely small and
highly efficient.

The only drawbacks are that functions are limited to
those that are predefined and available in the library,
that the programmer must usually be aware of any
assumptions the library makes about object layout in
memory, and that it is hard to get anywhere near peak
performance if we are relying on a conventional scalar
CPU to decide when and where to initiate functions.

SPMD Model

This is an extension of the library model where a
compiler will identify opportunities for parallelism,
such as between loop iterations, and replace said loop
by a new function call which activates a new function
stored in the PIM library. This new function is
constructed from the loop body, and compiled into
native PIM CPU code. This approach was actually
successfully used to partially parallelize some Ada
program for the EXECUBE PIM. The problems are as

before: limitations to the scalar capability of the main
CPU, and the additional problem of dynamically
managing the library overlays, especially in a multiple
process environment.

Modify ON Access (MONA) Model

The MONA approach is a new one just beginning
investigation at Notre Dame. In this model, objects in
memory that are to receive PIM processing are treated
as “file”-like objects to which one can perform
traditional “open,” “close,” “read,” and “write” like
operations. In addition, however, functions can be
“pushed” onto an object in between an open and a read
or write. These functions act somewhat like “filters” in
streams - any access to the object involves these filters.
For example, if an object is kept in memory in a
compressed fashion, pushing a “decompress” onto the
object before accessing it will convert it into a normal
form. Likewise pushing a “compress” onto the write
path will recompress data updates to the object. A
“pop” operation can similarly remove a filter. In terms
of PIM operation, identifying the filters in this way
allows a wide variety of evaluation strategies to be
employed. “Eager beaver” operations in the PIM could
be invoked as soon as the filter was pushed. More
elaborate filters may perform some “upfront” PIM
processing, but invoke PIM library functions as needed
to support the individual accesses. Prototypes of this
approach are currently under construction using
traditional page fault mechanisms on conventional
workstations. With extensions, it appears quite likely to
be usable in any of the execution models, but most
especially in the AMM model where it allows us in a
very early and simple way to “prespecify” processing
that may want to be done on data to be transferred
between different levels of the memory hierarchy.

Locally Shared/Globally Distributed Model

Clearly, all the techniques for software development
that have been used for modern SMPs and distributed
memory parallel processors can be used in the PIM
context. Message passing libraries are an obvious
candidate. The major obstacle is the memory density.
Today and for the next one to two generations of
memory technology, the PIMs are going to have less
memory per operation than conventional wisdom
proscribes, and the additional storage per node to hold
a copy of a microkernel, MPI library, and such are
probably too expensive. This, however, will change
with increasing memory density. For example, a
million nodes each requiring a megabyte for operating
system and runtime results in a terabyte total. This is
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huge in a 1 TB system but inconsequential in a 100 TB
one.

Split Execution Model

In terms of latency management, especially for systems
such as the AMM model, another programming model
may turn out to be very significant. In this model, the
compiler breaks the program into two concurrently
executing pieces. One performs the specified
computations, but against a memory space that
matches what can be implemented at the lower levels
of the memory hierarchy. The other, however,
represents a “skeleton” of the program, namely the data
movement instructions minus the computational
“leaves.” This part is executed in the memory PIMs
and assembles/disassembles computational “closures”
that are shipped up and down the memory hierarchy.
Synchronization occurs only at the “closure” level.

Although not implemented in its totality, such a model
does have some strong correlations to modern
practices. For example, in most modern RISC
microprocessors, the compilers go out of their way to
schedule the loads and stores of CPU registers and
memory in ways that individual computational
instructions will almost never block. The CPU registers
are treated as a separate address space just as discussed
above. Another example is in many attached signal and
vector processors. In the IBM 3838 array processor, for
example, the unit had internally several pipelined
floating point units which could directly address are
relatively large (for its time) block of SRAM storage
[15]. A separately  programmable unit sat between this
memory and the main DRAM memory. Its entire
purpose was to manage data transfers between the two
memories. Approximately a half dozen data transfer
routines matched the transfer patterns for virtually all
the vector and array functions implemented in the
computation unit. Explicit synchronization instructions
at the end of large sequences of computation and
parallel data transfers kept everything in order, with
very high efficiency.

Current efforts are under way to investigate automated
ways to develop these data transfer programs. One
example is the use of combinators [14] to represent the
data movements and conventional operations for the
computations. Programs expressed in such terms
represent trees with the computational operations at the
leaves, and the internal nodes as combinators. When
executed in parallel, the combinators simply “reorder”
their operands to position the correct values for the
appropriate operations. A parallel simulator is

approaching completion, and will be used initially to
explore the efficiency of such an approach to several
standard parallelizable operations such as matrix
multiply.

PIM in the HTMT Program Execution
Architecture Model

The HTMT architecture is based on a multithreaded
program execution model which hides latency by
context switching among concurrent threads.  A
necessary condition for a thread to become enabled is
that all data required by the thread have been produced,
and all control dependences are satisfied.  However,
one unique feature of the HTMT thread activation
model is the introduction of an additional necessary
condition for a thread to become enabled: it must also
meet all “locality requirements” for efficient
execution.  Intuitively, all data and code referenced by
the thread should become local before a thread can
begin execution.

To realize the HTMT thread program execution model,
a new multi-level multithreaded context management
strategy, called thread percolation, is currently under
study. This methodology and the underlying
mechanisms it requires can be considered to be a
combination of multithreading with dynamic
prefetching of coarse-grain contexts. Prefetching in the
past has concentrated on moving blocks of data within
the memory hierarchy. The dynamics of the multi-level
context management strategy cause “hot'' contexts to
move up towards the processors and “cool'' contexts to
drift to lower, slower, higher-capacity memory. The
context percolation can be considered as a
generalization and extension of some earlier schemes
(e.g. the “register-cache” and “register use cache”),
where percolation is now performed across the entire
memory system [6, 7].

Control of this context percolation methodology
requires smart memory with substantial control logic
associated with the memory chips themselves—e.g.
PIM. PIM functionality will be extended and tailored
for use at the appropriate levels of the HTMT memory
hierarchy to provide support for the HTMT memory
model, including thread percolation. It will also include
sophisticated in-memory operations, pointer tracing,
compound atomic operations for synchronization and
mutual exclusion.
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Summary

By alleviating bottlenecks in both latency and
bandwidth between the CPU and memory, PIM
technology holds great promise over conventional
architectures in achieving petaflops-level computing.
Nonetheless, a PIM-only system would still require on
the order of a million or more way parallelism to reach
a petaflops. The goals of the HTMT project are to both
reduce the level of parallelism required to reach a
petaflops and to manage it more efficiently, through a
combination of 100 GHz superconducting RSFQ CPUs
and multi-threaded program execution and architecture
models.

Because memory may be 100,000 or more cycles away
from the CPU in the HTMT architecture, it can no
longer assume its traditional, passive role of providing
data only when requested by the CPU. Rather, memory
must take on an active role, anticipating the needs of
the CPU and performing supporting computation. PIM,
in effect, provides the capability to radically rethink the
semantics of computer memory.

PIM is thus more than just another VLSI
implementation technique. It will change computer
architecture in a variety of creative ways that will have
a significant impact on computer designs ranging from
the smallest one chip systems to the largest systems we
can foresee building in the next 15 years.
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