
A Preliminary Architecture for a Basic data-L‘iow Processor* 

Jack B. Dennis and David P. Misunas 
Project MAC 

Massachusetts Institute of Technology 

Abstract: A processor is described which can achieve highly parallel execution of programs represented in data- 
flow form. The languake implemented incorporates conditional and iteration mechanisms, and the processor is a step 

toward a practical data-flow processor for a Fortran-level data-flow language. The processor has a unique archi- 
tecture which avoids the problems of processor switching and memory/processor interconnecion that usually limit the 
degree of realizable concurrent processing. The architecture offers an unusual solution to the problem of struc- 
turing and managing a two-level smmory system. 

Introduction 

Studies of concurrent operation within a computer sys- 
tem and of the representation of parallelism in a pro- 
graming language have yielded a new form of program 
representation, known as data flow. Execution of a 
data-flow program is data-driven: that is, each instruc- 
tion is enabled for execution just when each required 
operand has been supplied by the execution of a prede- 
cessor instruction. Data-flow representations for pro- 
grams have been described by Karp and Miller [S], Rod- 
riguez [Ill, Adams [l], Dennis and Foeseen [5]. BPhrs 
[2], Kosinakl 19, lo], and Dannis [4]. 

We have developed an attractive architecture for a pro- 
cessor that executes elementary data-flow programs [6, 
71. The class of programs implemented by this processor 
corresponds to the model of Karp and Miller [a]. These 
data-flow programs are well suited to representing sig- 
nal processing computations such as waveform generation, 
modulation and filtering, in which a group of operations 
is to be performed once for each sample (in time) of the 
signals being processed. This elementary data-flow pro- 
cessor avoids the problems of processor switching and 
processor/memory interconnection present in attempts to 
adapt conventional Van Nsumen type machines for parallel 
computation. Sections of the machine camrmnicate by the 
transmission of fixed size information packets, and the 
machine is organized so that the sections can tolerate 
delays in packet transmission without compromising ef- 
fective utilization of the hardware. 

We wish to expand the capabilities of the data-flow 
architecture, with the ultimate goal of developing a 
general purpose processor using a generalized data-flow 
language such as described by Dennis [4], Kosinski [9, 
101 and Bahrs (21. As an intermediate step, we have de- 
veloped a preliminary design for a basic data-flow pro- 
cessor that sxecutes programs expressed in a more power- 
ful language than the elementary machine, but still not 
achieving a generalized capability. The language of the 
basic machine is that described by Dennis and Fossesn 
151, and includes constructs for expressing conditional 
and iterative execution of progrsm parts. 

In this paper we present solutions to the major probliems 
faced in the development of the basic machine. A 
straightforward solution to the incorporation of decis- 
ion capabilities in the machine is described. In addi- 
tion, the growth in program size and complexity with the 
addition of the decision capability requires utilization 
Of a two-level memory system. A design is presented in 
which only active instructions are in the operational 
memory of the processor, and each instruction is brought 
to that memory only when necessary for program execution, 
and r-ins there only as long as it is being utilized. 

* 
The work reported here was supported bv the National 
Science Foundation under rese&h grand 63-34671. 

The ElementaN Processor - 
The Elementary Rocessor is designed to utilize the ele- 
mentary data-flow language as its base language. A pro- 
gram in the elementary data-flow language is a directed 
graph in which the nodes are operators or links. These 
nodes are connected by arcs along which values (conveyed 
by tokens) may travel. An operator of the schema is 
enabled when tokens are present on all input arcs. 'J&s 
enabled operator may firs at any time, removing the to- 
kens on its input arc=omputing a value from the oper- 
ands associated vith the input tokens, and associating 
that value with a result token placed on its output arc. 
A result may be sent to mDle than one destination by 
means of a link which removes a token on its input arc 
and places tokens on its output arcs bearing copies of 
the input value. An operator or a link cannot fire un- 
less there is no token present on any output arc of that 
operator or link. 

An example of a program in the elementary data-flow lan- 
guage is shown in Figure 1 and represents the following 
simple computation: 

-a, b 
y :a (a+b)/x 
x : = (a*(a+b))+b 

output y, x 

i A4 

Figure I. An elementary doto- flow progrom 

12.5 



tration Network which directs it to an appropriate Opera- . . 
tion Unit by decoding the instruction portion of the pack 
et. 

The result of an operation leaves an Operation Unit as on 
or mDre data packets, consisting of the computed value an 
the addressof a register in the Memory to vhich the valu 

Fqur. 2 Orqonllotlo” or ttl* ~l.msnlory doto-‘lo* !arw,.*mr. is to be delivered. The DFstZibution Netvork accepts dat. 
packets from the Operation Units and utilizes the address 

The rectangular boxes in Figure 1 are operators, and each of each to direct ehe data item through the nehwrk to th 
arithmetic ooeretor in the above computation is reflected correct register in the Hemorv. The Instruction Cell con 
in a correspbndlng operator in the piogram. The small 
dots are links. The large dots represent tokens holding 
values for the initial configuration of the program. 

talning that register may then be enabled if an lnstruc- 
tion and all operands are present in the Cell. 

In the program of Figure 1, links Ll and L2 are initially 
enabled. The firing of Ll makes copies of the value a 
available to operators Al and A3; firing L2 presents the 
value b to operators Al and A4. Once Ll and L2 have 
fired (in any order), operator Al is enabled since it 
vi11 have a token on each of its input arca. After Al 
has fired (completing the computation of a+b), link L3 
will become enabled. The firing of W vi11 enable the 
concurrent firing of operators A2 and A3, and so on. 

The computations represented by an elementary program 
are performed in a data-driven manner; the enabling of 
an operator is determined only by the arrival of values 
on all input links, and no separate control signals are 
utilized. Such a scheme prompted the design of a pro- 
cessor organized as in Figure 2. 

A data-flow schema to be executed is stored in the Mem- 
9 of the processor. The Merry is organized into- 
Instruction w, each Cell corresponding to an opera- 
tor of the data-flow program. Each Instruction Cell 
(Figure 3) is composed of three registers. The first 
register holds an instruction (Figure 4) which speci- 
fies the operation to be performed and the address 
of the register(s) to which the result of the operation 
is to be directed. The second and third registers hold 
the operands for use in execution of the instruction. 

When a Cell contains an instruction and the necessary op- 
erands, it is enabled and signals the Arbitration Network 
that it is ready to transmit its contents as an operation 
packet to an Oocration w which can perform the desired 
function. The operation packet flow through the Arbi- 

[nstruction C*I I 

Many Instruction Cells may be enabled simultaneously, and 

it is the task of the Arbitration Network to efficiently 
deliver operation packets to Operation Units and to queue 
operation packets waiting for each Operation Unit. A 
structure for the Arbitration Network providing a path fo 
operation packets from each Instruction Cell to each Op- 
eration Unit is presented in Figure 5. Rach Arbitration 
m passes packets arriving at its input ports one-at-a- 
time to its output port, using a round-robin discipline t 
resolve any ambiguity about which packets should be sent 
next. A Svttch Unit assigns a packet at its input to one -- 
of its output ports, according to some property of the 
packet, in this case the operation code. 

The Distribution Network is similarly organized using 
Switch Units to route data packets from the Operation 
Units to the Memory Registers specified by the destina- 
tion addresses. A fev Arbitration Units are required ao 
data packets from different Operation Units can enter the 
network simultaneously. 

Since the Arbitration Network has many input ports and 
onlyafev output ports, the rate of packet flov will be 
much greater at the output ports. Thus, a serial rep- 
resentation of packets is appropriate at the input ports 
to minimize the number of connections to the Memory, but 

a mOre parallel representation is required at the output 
ports so a high throughput may be achieved. Hence, 
serial-to-parallel conversion is performed in stages 
within the Arbitration Netvork. Similarly, parallel-to- 
serial conversion of the value portion of each result 
packet occurs vithin the Distribution Network. 

The Operation Units of the processor are pipelined in 

operation code 

destination destination 
I 2 

-0 
I I I I I 

Tr speclollzed function 

L operollon untt 

- ,q,.rr 3 operat,on 0, or !nSlr”Cf,D” Cell Flqure 4 Insrrucllon formal 

126 



A 
(a) data llnk 

A 
(b) control llnk 

Figure 6. Links Of the basic doto-flow longuoge. 

order to allow maximum throughput. The destination ad- 
dress(es) of an instruction are entered into identity 
pipelines of the Opration Units and are utilized to 
form data packets vith the result when it appears. 

A more detailed explanation of the elementary proce66or 
and its operation is given in (61. We have completed 
designs for all units of the elementary processor in the 
form of speed-independent interconnections of a small 
set of basic asynchronous module types. These designs 
are presented in [7]. 

Cc I T-gate 

(e) merge (f) boolean operator 

Figure 7. Actors of the basic data-flaw language. 

The Basic Data-Flow Lanarune ---- 
Our success in the architecture of the elementary data- 
flw proces6or led us to consider applying the concepts 

to the l rchftecture of machine6 for more complete data- 
flov languages. For the first step in generalization, 
M have choren. a class of datarflpw programs that corre- 
spond to a formal data-flow model studied by Dennis and 
Forreen [5]. 

The representation of conditionals and iteration in 
data-flow form requires additional types of link6 and 
actors. The types of link6 and actors for the baric 
data-flow language are shown in Figures 6 and 7. 

D6t6 values pa66 through data link6 in the manner pre- 
rented previously. The tokens transmitted by control 
link6 are knovn as control tokens and each convey6 a - -* 
value of either true or false. A control token is gcner- 
ated at a deciderich,~ receiving values from its 
fnput arcs, applies its a66ociated predicate, and produces from the input arc correrponding to the value of the 

either a true or false control token at its output arc. control token received. llny tokens on the other input 
-- are not affected. 

the value true at its control input. It viL1 absorb the 
data tokenFits input arc and place nothing on Its out- 
put arc if a false-valued control token is received. 
Simflarly, thxate will paas its input data token to 
its output arc only on receipt of a false-valued token 
on the control input. Upon receipt oftrue-valued to- 

- ken, it will ab6orb the data token. 

A 6rrge actor has a true input, a false input, and a 
control input. It pasacs to its output arc a data token 

(a) operator 

T 

The control token produced at a decider can be combined 
with other control tOk8n6 by means of a Boolean operator As vith the elermntary schcrrms, a link or actor is not 

(Figure 7f), allowing a decl6ion to be built up from 
enabled to fire unlecls there is no token on any of its 

6impler deCi6ion6. output arc6. 

Control tokens direct the flw of data tokens by means 
U6ing the actors and links of the basic data-flow lan- 

of T-gates, F-gates, or merge actors (Figure 7c, d, e). mw3e. conditionals and iteration can be easily reore- 

A T-gate pa6ses the data token on its input arc to its seated. In illustration, Figure 8 gives a basic data- 

output arc vhen it receive6 a control coke” conveying flw program for the following computation: 

&ggty, x 

n := 0 

while y c x k 
y:=y+x 

n :=n+l 
F end - 

outout y, n 
*I The control input arc6 of the three merge actors carry 
* false-valued tokens in the inltlal configuration so the 

n inpue value6 of x and y and the conscant 0 are admitted 
a6 initial values for the iteration. Once the6e values 
have been received, the predicate y < x is tested. If 
it is true, the value of x and the new value for y are 
cycled back into the body of the iteration through the 
T-gates and tvo merge nodes, Concurrently , the remaining 
T-gate and merge node return an incremented value of the 
iteration count n. When the output of the decider is 
m, the current values of y and n are delivered 
through the two F-gates, and the initial configuration 
is restored. 

n 
The Basic Data-Flow Processor ---- 
Two problems must be faced in adapting the design of the 

127 



elementary data-flow processor for basic aaca-flow pro- 

gr-. The first task is to expand the architecture of 
the elementary machine to incorporate decision capability 
by implementing deciders, g stes and merges. A fairly 
straightforward solution to this problem will be pee- 
sented. 

Waver, in contrast to elementary data-flow programs, 
the nodes of a basic data-flow program do not fire 
equally often during execution. A9 computation pro- 
ceeds, different parts of the program become active or 
quiescent as iterations are initiated and completed, 
and a9 decisions lead to seleceion of alternate parts 
of a program for activation. Thus it would be wasteful 
to assign a Cell to each inscruccion for the duration of 
program execution. The basic data-flow processor must 
have a multi-level memory system such that only the AC- 
tive instructions of s program occupy the Instruction 
Cells of the processor. In the following sections UC 
first show how decision capability may be realized by 
augmenting the elementary processor; then we show how a~ 
auxiliary memory system may be added SO the Instruction 
Cells act as a cache for the most active instructions. 

Decision Capabiliq 

The organization of a basic data-flow processor without 
ehe two-level memory is shown in Fig. 9. As in the ele- 
mentary processor, each Instruction Cell consists of 
three Registers and holds one instruction together with 
spaces for receiving its operands. Bach instruction cor- 
responds to an operator, a decider, or a Boolean operator 
of a basic data-flow program. The gate and merge actors 
of the data-flow program are not represented by separate 
instructions; rather, the function of the gates is incor- 
porated into the instructions associated with operators 
and deciders in a manner that will’be described shortly, 
and t,he function of the merge actors is implemented for 
free by the nature of the Distribution Network. 

Inetructions that represent operators are interpreted by 
the Operation Units to yield data packets as in the ele- 
mentary processor. Instructions that represent: decider9 
or Boolean operators are interpreted by the Decision 
Units to yield control packets having one of the two 
forne 

{JX!%E, {a, (address) ) 
{u, {a, (address)} 

A gate-type control packet performs a gating function at 
the addressed operand register. A value-type control 
packet provides a Boolean operand value to an Instruction 
Cell that represents a Boolean operator. 

The six formats for the contents of Instruction Cells in 
the basic processor are given in Figure 10. The uee of 
each Register is specified in ies leftmost field: 

I inseruction register 
D operand register for data values 
B operand register for Boolean values 

Only Registers specified to be operand registers of con- 
sistent type may be addressed by instructions of a valid 
program. 

The remaining fields in the InstrLcrion Cell formats are: 
an instruction code, op. pr or bo, ehat identifies the 
class and variation of the instruction in ehe Cell; from 
one to three destination addresses dl, d2, d3 that speci- 
fy target operand registers for the packets generated by 
instruction execution; in the case of deciders and Boolean 
opera tars , a result x cl, t2, e3 for each destination 
that specifies whether the control packet is of gate-type 
(tag =e) or of value type (tag =u) ; and, for each 
operand register, s Bating code gl, g2 and either a data 
receiver v 1, v2 *r a control receiver cl, c2. -- 

. . Arbatrotlon 

D . Nblrorh I 

Flguro 9. Orgonizoclon of o boric doto -flow procsssor 
rOhou) two - IWCII mrmory 

The gating codes permit representation of gate actors 
that control the reception of operand values by the op- 
erator or decider represented by the Instruction Cell. 
The meanings of the code values are as follows: 

code value -- meaninq 

a0 the associated operand is not gated. 

true an operand value is accepted by arrl- 
val of a true gate packet; discarded 
by arrival of a false gate packet. 

false an operand value is accepted by arri- 
val of a false gate packet; discarded 
by arrive-a true gate packet. 

cons the operand is a constant value. 

The structure of a data or control receiver (Fig. 11) 
provides space to receive a data or Boolean value, and 
hue flag fields in which the arri61 of data and confxol 
packets Is recorded. The ga!e flaa is changed from off 
to true or false by A true or false gate-type cuntrol 
PACiZ the-e flag is changed from off to on by A 
data packet or value type control packet according to 
the type of receiver. 

128 



t IT t I 

The function of each Instruccfon Cell is co receive data 
and control packets, and, *en the Cell becomes enabled, 
to transmit an operation or decision packet through the 
Arbitration Network and reset the Instruction Cell to 

its initial status. An Instruction Cell becomes enabled 
just when all three of its registers are enabled. A reg. 
ister specified to act as an instruction register is Al- 
ways enabled. Regirters specified to act as operand rcg- 
isters change state with the arrival of packets directed 
to them. The state transitions and enabling rules for 
dsta operand registers are defined in Fig. 12. 

In Fig. 12 the contents of an operand register are rcp- 
resented as follows: 

0, - true: (,ruc, El m at filled ond enoblcd 

L L 

I gate flag 

goting code 

register USI Indicofor 

The asterisk indicates chat the Register is enabled. 
Events denoting arrival of data and control packets 
are labelled thus: 

d data packet 

; 
true gate-type control packet 
falra gste-type control packet 

With this explanation of notation, the state changes and 
enabling ruler given in Fig. 12 should bi clear. Similsr 
rules apply to the state changes and enabling of Boolean 
operand regir ters . Note that arrival of a gate-type con- 
trol packet that does not match the gatkng code of the 
Regf8ter cauees the associated data packet to be discar- 

ded, ana resees the Keglscer co its scarring cono~c~on. 

The operaclon oackees sent to Operarion Unirs and deci- 
sion oackets sent to Decision Units consist of the en- -- 
tire contents of the Instruction Cell except for the 

gating codes and receiver status fields. Thus the pack- 

ets sent through the Arbitration Network have the fol- 
lowing formats : 

To the Operation Units: 

op, vl, v2, dl 
op, vl, dl, d2 

To the Decision Units: 

pt. vl, ~2, tl, dl 
pr, vl, tl, dl, t2, d2 
bo, cl, c2, tl. dl, t2, d2, t3, d3 
bo, cl, tl, dl, t2, d2, t3, d3 

An initial configuration of Instruction Cells correspon- 
ding to the basic data-flov program of Fig. 8 is given 
in Fig. 13. For simplicity, Cells containing control 
distribution and data forwarding instructions are not 
sham. Instead, we have taken the liberty of writing 
any number of addresses in the destination fieldr of 
inrtructiona. 

The initial values of x and y are placed in Registers 2 
and 5. Cells 1 and 2, containing these values, are 

then enabled and present to the Arbitration Network the 
operation packets 

f 
fdcnt; 8, 11, 14 

X 1 
end 

{ 
ident; 7, 13, 20 

Y 1 
‘l’heoe packets are directed to an identity Operation 
Unit which merely createa the desired data packets with 
the valuea of x and y and delivers the packets to the 
Mstribution Nebrork. 

Upon receipt by the Memory of the data packets directed 
to Registers 7 and 8, cell 3 will be enabled and vi11 
transmit its decision packet to a Decision Unit to Per- 
form the less than function. The result of the decision 
till be rzed through the Control Nehrork as five Con- 
trol packe es. If the result is CI(LC,' Cells 4, 5 and 6 
will be enabled and vi11 send their contents through the 

CIll I l 

0502 y 
I 

CIll 3 

129 



&bitration Netwrk to OperAtion Units capable of Per- 
forming the identity and addition operations. If the 
result of thi decision is false, output cells 7 and 8 
vi11 be enabled, and cells 4, 5, and 6 will have their 
gated operands deleted. 

Weuuq Hi ersrchv Vitro-leve 1 

The high level of parallel activity achievable in dats- 
flow processors makes a unique form of memory hierarchy 
feasible: the Instruction Cells are arranged to act AS 
a cache for the most actfve instructions of the data- 

flow program. Individual instructions are retrieved 
from auxiliary memory (the Instruction Memmy) as they 
become required by the progress of computation, and in- 
structions are returned to the Instruction Meavry when 
the Instruction Cells holding them are required for more 
active parts of the program. 

The organization of a basic data-flow processor with 

Iortruction Memory is given in Fig. la. 

Instruction Messmy 

The Instruction Memory has a storage location for each 
poaeible register address of the basic processor. 
These storage locations are organized into groups of 
three locations identified by the address of the firat 
loution of the group. Each group can hold the contents 
of one Instruction CeLL in the formets already given in 
Fig. 10. 

A mmorv comnand packet (a, r&r) presented to the corn-- 
d port of the Xostruction Memory, requests retrfzl 
of an Instruction packet (a. x) in which x is the Cell 
contents stored in the group of locations specified by 

address A. The instruction packet is delivered at the 
retrieve port of the Instruction he-. 

An instruction packet (a, x) presented at the store port 

of the Instruction Memory requests storage of Giicon- 
tmto x in the three-location group specified by address 
a. Hmmver, the storage is not effective untfL a m-ry 
mold packet (q, m) is received by the Inatruetion 

Memory at its conmmnd port, and any prior retrieval re- 

quest has been honored. Similarly, retrieval requests 
are not honored until prior storage requests for the 
group have taken effect. 

We envision that the Instruction Memory vould be de- 
signed to handle large numbers of storage and retrievsl 
.requests concurrently, much AS the input/output facilities 
of contemporary computer systems operate under softvare 
control. 

CeLL Block ODeration -- 
For application of the cache principle to the basic. data- 
flow processor, an Instruction Memory address is divided 
into a w address and a mfnor address, each containing 
a number of bits of the address. One Cell Block of the 
processor is associated vith each possible major address. 
All instructions having the same major address are pro- 
cessed by the Instruction dells of the corresponding Cell 
Block. Thus the Distribution and Control Networka use 
ths major address to direct data packets, control Packets, 
and instruction packeta to the appropriate Cell Block- 
The packets delivered to the Cell Block include the minor 
address, vhich is’sufficient to determine how the PA&et 
should be treated by the CaLl Block. 

Operation and decision packets leaving a Cell Block have 
exactly the same formet AS before. Instruction packats 

leaving a Cell Block have the form (m, x) where m is a 

minor address and x is the contents of an Instruction 
Cell. The major address of the Cell Block is appended 
to each instruction packet as it travels through the AP 
bitration Network. In the same way, memory c-ad 
packets Leave the Cell Block with just a minor addrear, 
which is augnmnted by the mejor address of the Cell Block 
during its trip through the Memry Cmnd Netwrk. 

Fig. 15 shows the structure of a Cell Block. gach In- 
struction Cell is able to hold any instruction vhoae ma- 
jor address is that of the Cell Block. Since euny mme 
instructicmr share A aujor address than there are Calls 
in a Cell Block, the Cell Block includes an Association 
Table which hae en enap (m, I) for each Instruction 
Cell: m is the minor address of the instruction to vhich 
the Cell is aseigned, and f is a Cell status fndiutor 
who#e values have significauce as follows: 

status value -- lseehilq 

&gg the Cell is not assigned to any in- 
struction 

engaRed the Cell has been engaged for the in- 
struction having minor address m, b 
arrival of a data or conrrd Packet 

OccuDied the Cell is occupied by an iMetuCtion 
with minor address m 

the Stack elamsnt of a Cell Block holds an ordering of 
the Iwuuctioa Cells as candidates for dieulacmt of 
their contents by newly activated InstiuCti~. CulY 
Cells in occupied status are candiates for displa-nt. 

Operation of a Cell Block can be specified by giving two 
procedures -- one initiated by arrival of a data or con- 

trol picket at the Cell BLock, and the other activated 
by arrival of an instruction packat from the Instruction 
-rY. 

Rocedure 1: Arrival of A dats or control pa&et (n, y) 
where n is a minor address and y is the packet con- 
tent. 

StCp 1. Doea the Association Table have an entiy vith 
minor address n? If so. let p be the Cell corre- 
sponding co the entry, and go KO step 5. Othervise 
continue with step 2. 

SfCp 2. If the association Table show chat no Instruc- 
cion Cell has status free, go to step 3. Otherwise 
lat p oe a Cell vith status free. Let the Associa- 



tfon Table entry for p be (m, fret); go to step 4. 

(Iccp 3. Use the Stack to choose a Cell p in occupied 
#tata for preamptim; let the Assocfation Table 
entry for p be (m, occupied): transmit the con- 
tents s of Cell p as an instruction packet (m, E) 
to the Inatructlon Me&ny via the Arbitration Net- 
wrk; transmit the mcmolp conmand packet (m, store) 
to the Instruction Memory through the Memory G 
msnd Network. 

step 4. fake an entry [n, engaged) for Cell p in the 
Association Table; transmit the memory c-nd 
packet (n, retr] to the Instruction Mewry via the 
Memory CormuTNetvork. 

ltCp 5. Update the operand register of Call p having 
minor address n according to the content y of the 
data or control packet (the rules for updating are 
those givm in Fig. 12). If Cell p is occuuied 
the state change of the register must be colui6- 
tent with the instruction code or the program fa 
invalid. If Cell p is ennalcd, the changes must 
be consistent with the register status left by 
preceding packet arrivals. 

step 6. If Cell p is occupied and all three registers 
are enabled (according to the rules of Fig. 12). 
the Cell p is enabled- transmit an operation o&-de- 
cision packet to the Operation Units or Decision 
Unit8 through the Arbitration Network; leave Cell 
p In occuuied status holding the ssme instruction 
with its operand registers reset (receivers empty 
with the gate and value flags set to off). Change 
the order of Cells in the Stack to macCel1 p the 
last candidate for displacewnt. 

Procedure 2: Arrival of an instruction packet [n, x) 
with minor address n and content x. 

g&g 1. Let p be the Instruction Cell vith entry 
(n, engaged) in the Association Table. 

m 2. The status of the operand registers of Cell p 
must be consistent vith the content x of the in- 
struction packet, or the program is invalid. Up- 
data the contents of Call p to incorporate the in- 
struction and operand status information in the in- 
structlon packet. 

step 3. Change the Association Table entry for Cell p 
from (n, maaged) to (n, occupied). 

step 4. If all registers of Cell p are enabled, then 

Cell p is enabled: transmit an operation or deci- 
sion packet to the Operation Units or Decision 
Units through the Arbitration Network; leave Cell 
p in occupied status holding the same instruction 
with its operand registers reset. Change the order 
of Cells in the Stack to make Cell p the last can- 
didate for displacement. 

Conclusion 

The organization of a computer which allows the execu- 
tion'of programs represented in data-flow form offers a 
very promising solution to the problem of achieving 
highly parallel computation. Thus far, the design of 
tvo proces*ors, the elementary and the basic data-flov 
processors, has been investigated. The elemsntary pro- 
cessor is attractive for stream-oriented signal pro- 
ceseing applications. The basic processor described here 
ie a first step tovard a highly parallel processor for 
ntlmarical algorithms expressed in a Fortran-like data- 
flow language. However, this goal requires further elab- 
oration of the data-flow architecture to encomparr ar- 
rays. concurrent activation of procedures, and aom means 
of exploiting the sort of para1Ielism present in vector 
operations. We are optimistic that extensions of the 
architecture to provide these features can be devised, 
and we are hopeful that these concepts can be further 
extended to the design of computers for general-purpose 
computation based on more complete data-flow models such 
as presented by Dennis [4]. 

References 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

Adams, D. A. h Computation Model With Data Flow Se- ----- 
guencing. Technical Report CS 117, Computer Science 
Deparmnt. School of H~nities and Sciencea, Stan- 
ford University, Stanford, Calif., December 1966. 

Bihrr, A. Operation patterns (An extensible model 
of an extensible language). Svnmosium on Theoret- -- 
feat Rograpmfnq, Novosibirsk, DES& August 1972 
Fprint). 

Dermis, J. B. Rogranssing generality, parallelism 
and computer architecture. Information Processing 
68, North-Holland Publishing Co., Amsterdam 1969, 
484-492. 

Dennis, J. B. Firat veraion of a data flow proced- 
ure language. Symposium on Rwrassning, Inatitut .de 
Rograsmation, Dniversity~f Paris, Paris, France, 
April 1974, 241-271. 

Dennis, J. B., and J. B. Foaseen. Introduction & 
Data Flow Schemss. November 1973 (submitted for --- 
publication). 

Dennis, J. B., and D. P. Misunas. A computer archi- 
tecture for highly parallel signal processina. 
Proceedinns of-the ACM 1974 National Confereice, ----- 
AfZ4, New York, November 1974. 

Dennis, J. B., and D. P. Misunas. ThcDcrinnofa 
Hinhlv Parallel Commuter for Sinnal Recessing he- 
plicationss Computation Structures Croup Memo 101, 
Reject MAC, M.I.T., Cambridge, Mesa.. July 1974. 

Karp, R. M., and R. E. Miller. Roperties of a 
model for parallel computationa: determinacy, ter- 
mination, queueing.. SIAM J. &&. e. ti 
(November 1966), 1390x1: 

Kosinski, P. R. A bta Flow Ro~rassuins Lansuag 
Report RC 4264, I%f~J~tson Research Centers' 
Yorktown Heights, N. Y., Msrch 1973. 

Kosinski, P. R. A data flow language for operating 
systems programming. Roceedinrs of ACH SICPLW- --- 
STCXJPS Interface Meeting, SICPLAN Notices 8, 9 
(September 1973). 89-94. 

Rodriguez, J. E. A Graph Model for Parallel domou- 
cation. Report TR-f,4, Reject MAC, M.I.T., Cam- 
bridge, Mass., September 1969. 


