Due 1o their simplicity and strong appeal to intuition,
data flow technigues attract a great deal of attention.

Other alternatives, however, offer more hope for the future.

A Second Opinion
on Data Flow Machines

and Languages

tv 5 3 key to high-speed computation

s 0f a given speed, 1 is the

5-..*11_5:3:'-'*
Assuming hardware compo
only remaining consideration in achieving raw spesd
2ity can be shackled by dependences, however,
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and wears of hardware and software work have been

devoted to understanding the types of d

n be obeyed or removed from a compucation.

Dependence tyvpes. There are three types of depen-

dence’: data, control, and resource. The firss rwo arse ir

programs and the third in machines. Therefore, exact
definitions depend on the type of language and machine
under consideration, although many nearly universal de-

wvpes of dara dependence” (see
Kuck e vpe): flow dependenos, ourpur

dependence, and anridependence. Flow depemdemoe ex-

g from the compuiation 1o the use of a variable. Oupur

dependence exists between [wo subsaquent compulations

. Anndependence exists from the use

of the same vani
of a vanable 10 s next COMPULariom. These three Iypes
ensure that the miendad values are, in facy, used ina com-
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Control depende ¥pes vary Irom language 10 an-

guzpge. For example, lo

op dependences exist from a loop

onrzl

header 10 ¢ach starement inside the loop, conditi

dependences exist from an IF to its THEN and ELSE

51 from a GOTO toits

parts, and GOT
destinanon
Respurce dependences arise when programs are com-
piled for and executed on a particular machine. Forcxam
ple, the existence of an adder and 2 multiplier that can be
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sequenced simultancously by the control unit allows these
two {but no more) arithmetc operations to be executed at

orv allpws simulian-

poce. A four-way interleaved mer
eous acoess [0 four words, but nomore. A single program
metic unat, ard a single memory led
n machine, and thess re-

ted in the defimanon of

counter, a single aris
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Dependence observation. Given a problem 1o solve on
some machine, it is useful 10 observe dependences at five
poinis in the selection, preparabon, and execution of an
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These arein (1) algorithm choice, (2) program-

TOCCssINg (Conirod

algorithm.
ming, (3) compiling, (4} instrection |
grit), and (5) instrection execution (processor, MEmory,
nterconnection)

A given algorithm has cemain
dences. For example, In certain Rerative computaions,
Zn iterate must be computed before it can be wsed How-
ever, other algorithms thal solve the same problem might
have less sequential dependence. For example, many
highly concurrent algorithms to solve Bnear ENCeS
are known,' and the use of any of these relaxes the se-

It-in data depen-

quentiality betwesn ieranons

Once an algorithm has been selected, the programming
language and programming sivle wsed to express the
algorithm can introduce additzonal dependences, as well
as encode its inherent dependences. For example, a com-
plex expression could be computed once, then stored, and
subsequenily used in several other expressons. This in-
troduces flow dependences. Usually, programmers are
not concerned with the number or type of dependences
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they introduce. Some languages or styles prevent or try 1o
avoid certain types of dependences in programs. For ex-
ample, the single-assignment approach advocated in data
flow languages 2voids outpul and antidependences.

Compilers can remove and ‘or introduce dependences.
For example, 2 block of assignment statements in any
language can sasily be compiled into a form that obeys the
single-assignment rule. In fact, all three types of data
dependences can be removed automatically 1o produce 2
completely independent ser of assignment statementss;
statement substitution is used to remove flow dependen-
ces. On the ather hand, two array variables must not have
2 dependence, but a compiller that examines only array
names and not subscripts will inroduce 2 spurious depen-
dence. For example, if | =I=an, there is no dependence
be-ween A[2] and A[27—1). This will be missed if the
check is ahly for the array name A.

Consider the instruction processing carried out by a
control unil. Assumptions about data, control, and re-
source dependence are always built into the hardware of a
control unit. For example, the traditional von Neumann
machine 2ssumes that machine instrisctions are processed
one a1 a time, with some smultansity possible in mulkiple
address instruction formats. Muhifunction machines
such as the CDC 6600 have look-zhead contred units that
examine two or mare instructions and check dependences
at runtime. If data and control dependences in the n-
struction stream allow and resources are available, the
control unit can seguence severzl instructions ai once.

More recent machines (2.g.. the CDC Cyber 205 and
the Burroughs BSP) have machine instructions that can
express array operations such as vector add or recurrenos
operations such as inner product. If the compiler recog-
nizes such 2n operation (because it is, for example, pro-
grammed sequentially or expressed in a vector extension
10 a sequential language), it can generate a single machine
instruction that carries it out by using a fast, highly
paralle] zlgorithm. In parallel or pipeline machines, the
control unit must aceess chunks of the operands, process
them, and store chunks of the result until the operation is
finished. In the case of recurrence operations, the control
unit must carry put 2 sequence of steps. These might cor-
respond to a complex dependence graph in which sirmul-
tansity was maximized when the machine was designed.
Foi example, a vectorized inner product could be 2 vector
multiply followed by 2 summation tree. Thus, an entire
small loop from a sequential program has all of its
dependences mapped onto the control-unic hardware for
fast runtime sequencing.

The line berween instrociion processing and instruction
execution is somewhat blurred across various types of
computers. In machines with array instruction sets, the
control unit knows, by virtue of the way in which its array
instructions were implemented, exactly how to sequence
its memory, processor, and intercommection network
paris 1o carry out an operation. In other types of
machines, the control unit decodes instructions, pro-
cesses addresses, and decides that an instruction can be
icsned. The individual steps, however, are not executed
entil all of the dependences of the insiructions are
satisfied. This principle is used in the Scoreboard of the
CDC 6600, the Tomasulo algorithm of the 1BM 360/91,*
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and in corrent data flow proposals. The point is that the
processor, memory, and imterconmection networks
themseives can ensure satisfaction of all dependences.
For example, if there is a great deal of randomness n 2
program arising, perhaps, from conditional statements or
irregular subscripts, the intuitive notion is thar hitle can
be preplanmed and that execution time-dependence
handling is. in fact, necessary for fast computation.

Article overview. In this article we undertake two
tasks. The first is to skeich the principles and practices of
data flow compuzation and to point out 2 pumber of
shortcomings of this approach 1o high-speed computa-
tion. The second is 10 sketch an alternative that leads 10
high-speed computation through higher-level use of de-
pendence graphs.

The daia flow approach and our alternative are roughly
characterized in Figure | . The data flow approach wsually
begins with 2 special programming language, which re-
searchers hope can be easily compiled into a dependence
graph. (Ordinary languages can alsc be used.) The prob-
lem then becomes one of efficiently mapping this onto a
machine that has decentralized control hardware. Often,
this machine is capable of exploiting substantially less
parallelism than exists in the program because it lacks the
hardwars 1o cause the dependence graph constrainis 1o be
followed 2s quickly as possible &t runtime. That is, quenes
of partially completed computations ane refied wpon 1o
keep the machine busy, and the gueue lengths absorb
some of the parallelism of the program.

Our approach can begin with either a data flow lan-
guzge or an ordinary programming language. A program
15 first put into a standard form (pormalized). Nexz, a
dependence graph is generated by, for example, analysis
of array subscripts. Then some arcs are removed by pro-
gram transformation, and some nodes and arcs are ab-
stracted® because they represent high-level constructs for

* 4 ferrranicn heos refens 1o the process of redocing & subgraph io a bgher-
ool mode
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Figure 1. Comparison of methods.
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which special algorithms {(instructions) can be used. Final-
Iv, code generation produces high-level machine instruc-
tions that contain much of the dependence strocture of
the original program, but transformed for high-speed
evzluation. The machine thal executes the generated code
can have a degree of simultaneity that is matched to the
program and still execute it efficently, because most
dependence testing need not be done at runtime. How-
ever, this approach reliss on compilation techmigues more
powerful than those usually assumed by data flow people.

Other sections of this armicle investigate the princples
of data flow architecture and proposed data flow lap-
guapes.

Data flow principles

In conirast to the seguential, onec-instrucion-ai-a-
ime, memory cell semantics of the von Neumann model,
the data flow model of computation is based on 1wo prin-
ciples:

(1) Asynchromy. All operations executed when and on-
Iv when the reguired operands are available.

{2) Funcrionalicty. All operations are functions; that is,
there are no side effects.

The first denorss an exscution mechanism im which
data values pass through data flow graphs as tokens and
an operation is triggered whenever all inpur tokens are
present at 2 node in the graph. The second princple im-
plies that any two enabled operations can be executed in
either order or concurrently.

Dynamic parallelism. Even when there s dara depen-
dence berwesn operations of the same ieration of 2 loop,
there i= nothing 1o stop fumber terations from pro-
cepding, even though one iteration = mot tocally com-
pleted. Thas causes tokens ro accumulare on certain arcs
of the data flow graph. It is then no longer possible 1o
declare a node executable by the presence of any two
tokens on its input, as they might belong to towally dif-
feren: parts of the computation. There are five possible
solutions to thss problem:

(1) The use of @ re-entran! grapk is prokibited. That is,
each stage of the iteration must be described by a separate
graph. This solution obviously reguires large amounts of
program siorage. It also reguires dymamic code genera-
tion if the loop's iteration depth is only known at runtime
Both of these deficiencies can result in significant over-
head in practical systems.

{2) The use of g re-entranr graph & allowed, bur an
itergtion is no! allowed 1o start before the previous one
kas finished. This approach does not allow for parallelism
between merations and requares exira instruclhions or
hardware to test the completion of an steration. It is used
in the LAL! system.?

(3) The use of a dara fTow graph i3 imited by allowing
only one raoken 1o reside onr each arc of the graph ar any
time. This is accomplished by allowing an operation to be
executable only when all its input tokens are present and
no bokens exist on its output arc. This approach, which
implies sequential but pipelined use of the dara flow

graph, allows exploitation of more parallefism than do
the previous twoe solutions. Pipelining is implemented
through the use of acknowledge signals, which are re-
murned 1o the nodes in the graph that generated those
values by the podes that consumed the values %7 These
acknowledge signals approximately double the number of
arcs in the corresponding data flow graph, and therefore
double the traffic through the daza flow machine.

{4) The rokens are assumed fo carry their index and
ireragtion level as o lebel. This label is usually called color.
A nodeis executable only if all input tokens have the same
calbor. The labeling method permits the use of pure static
code and enables maximum wse of any parallelism that ex-
ists in the problem specification. This 15 cleariy at the cost
of the extra information that must be carmed by each
toksn and the extra nodes {(instructions) for labeling and
delabefing. ** The penalty of this approach is obviously
extra time for calculating lzbels, or exira hardware
{silicon area) if calculation is concurreni.

{5} The rokens are guesed on arcs in order of their ar-
rival. This solution can defiver as much parallelism as the
labeling approach, but requires farge queues, which are
very costhy.

To compare the performance of data flow machines
that use these five approaches, consider the program in
Figure 2a. Assume that division takes three time units,
multiplication two, and addition one. The hypothetical
data flow machine has four processing units, 2ach capabile
of executing any operation. We idealize the machine by
assuming that memory and interconnection delays are
=T0.

Qwur example program dictates & certain order of execu-
tion, which s determined by the simplified data flow
program in Figure 2b. Obwviously, the critical path is
O TR ¢, which resulis in a lower bound on
execution of 13 time units.

nput d.et
for i from1ioBda
begm
{E) = ’
& =85 =8
B =g"*
G =B + 4
end
oupul a.b.c

Figure 2. A nonsanse example: (a) program: (b) simplified
data fow graph.
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Since thege is one division, one multiplication, and one
addition in sachiteration of the loop, it will take 6 x B=438
time units {Figure 3a) to execute the complete loop when
-using the one-iteration-at-a-time sirategy described in ap-
proach [2), above. This is basically a sequential execution,
and one processor would suffice. In practice, the compe-
tation is distribuied over all four prmﬁm's but the
utilization of processors remains at 12748 =0.25.

The one-token-per-arc sirategy E:} practiczlly turns
into pipelining of the block of assignment statements -
side the loop, as shown in Figure 3b. Execution time is
determined by the lom g-st operation (division) in the
loop. Thus, 3% 8+ 3=27 time units are necessary, with
wiilization at 12427 -ﬂ 44, Appeoaches (1), (4), and (5}
are similar. They achieve the best performance and
wtilization. as shown in Figure 3c. They need only 14 1ime
umits, with uilization equal to 12/14=0.86. However, a
random-scheduling strategy (followed in many data flow
architecture proposaks) can result in less than optimal ex-
ecution, as shown in Figure 3d, where 18 time units were
peeded to finish the computation . The detection of possi-
bie critical paths and scheduling along these pathsis a pro-
blem that none of the proposed daza flow machines have
solved.

For comparison, 2 possible sxecution on & vesior ma-
chine with 2 veciorizing compiler is shown in Figure 3¢. A

mediocre vectorizing compiler would detect that the first
and second statements in the loop can be vectorized. The
exscution time i 18 and the utilization 12/18=0.66. A
good vectorizing compiler would detect the recurrence in
the third statement, substitute a different algorithm, and
lower the sxecution time 10 14 with a utilization of one, as
shown in Figure 31, Note that recurrences arise freguently
in ordinary programs. '°

It i obvious from this simple example that the sequen-
tial machine offers the worst performance and the data
flow mmachine with labsled tokens the best. Pipelined and
vector machines are somewhere berween thoses extremes.
although the vector machine with a good optimizing com-
piler was competitive with the data flow machine in our
example. Remember, however, that our models are gross
oversimplifications of real machines. Since there are no
hard facts on performance of data flow machines, it re-
mzins 1o be s2en whether the overhead in 1oken labeling,
daza storage, and instruction commumication will lower
their theoretical upper bound on performance.

Performance under & low degree of parallelism. The
data flow graph can be considered the machine language
of a dara flow machine. Each node of the graph represents
an instructicn, and the arcs pointing from each pode can
be thonght of as the addresses of instructions receiving the
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result, Roughly speaking, 2 data Mlow machine consists of
four components: an instruction memory that contains
all instructions in the data flow graph, a set of processing
units that perform the operations specified by each in-
struction, an arbitration network that carries instruction
packets to appropriate processing units, 2nd a distribu-
tion network that carries the result packets back to the in-
struction memory. Obviously, the instruction memory
can be partitioned into several modules, to match the
bandwadth of the processing units and communication
networks. We asseme also that one unit of time is needed
to pass through each of the four components of our data
flow model.

[n contrast to the data flow model, the von Neumann
model consists of a central processing unit and a memory,
The central processing unit has a general-purpose register
file and an arithmetic-logic unit. Each register-to-register
operation takes one unit of time, as do ferch and store
from memory.

Tocrudely compare the performance and the program
size of these two models, we considered several programs
that, like the one given by Arvind, Kathail, and Pingzli,!!
integrate function Mfrom ato bover nintervals of size f by
the trapezoidal rule. We concluded that the data flow
model apparently requires more instructions than the von
Meumann model. This code inefficiency stems from rwo
principles of the data flow model:

(1) Distributed conirod, Each datem {or path m the
graph) is controlled individually. There are several sepa-
rate SWITCH instructions {at least one for each vanzable
assignment inside the body of a loop) that correspond 1o
one BRANCH instruction in the vor Neumann model.
Similarly, several independent MERGE mstructions
substitute for one JUMP instruction.

{2) No explicir storage. Since only values are passed
from one instruction to the other, valuss thai do not
change during the computation from one ileration to the
other must circelate in one way or another through the
s¥slem.

These redundancies lower the expecied performance
when the degres of parallelism (the number of operations
executable in parallel) is equal to or greater than the ideal
rate (the maximum possible number of operations execu-
ted concurrently).

In terms of raw speed on small programs, the von New-
mann model reguires less time. This performance advan-
tage is the conseguence of two things:

(1) Instruction pipefining. In von Neumann computers,
the fetch, decode address generation, and execution
phases of an instruction are allowed (o overlap. Thas,
each instruction averages only one time unit in 2 reason-
zbly sequential code. On the other hand, the data Mow
model does not allow papelining on the critical path. That
is, cach instruction must complete before the new one—
which uses the result from the previous one—can start.

{2) Local srorage. A data flow machine is basically a
memory-to-memory machine, since there is no concept of
storage. [t usually helps to keep all the input parameters
e a subroutine in high-speed, general-purpose registers,
as in our examples. This lack of locality severely degrades

the performance of the data flow machines on programs
with 2 low degree of parallehsm.

One might argue that although the data flow processor
is slower in raw speed, it is faster overall because it con-
tains many overlapped processing umils operating in
parallel. 5till, the degree of parallelism mus: be taken into
account. In a crude approximation appropriate to this
case, the data flow machine can be thought of as 2 long
pipeline. To keep the pipeline ssturated, the degres of
parallelism must be larger than the number of stages in the
pipedine. Under low parallclism, the pipeline = mot
saturated for a long period of time and serious degrada-
tion of performance occurs. For comparison, Cray-1
computers have functional unit pipelines with five to eight
stages in which register fetches are included. Data flow
machines have pipefines many times longer. They include
functional unirs, communication networks, and instruoc-
tion memory. Therefore, we can expect them to perform
pooriy under low parallelism. If features for parallelism
exploftation such as token labeling and array manage-
ment are added, the performance under low paralleBsm
becomes even worse.

Data flow machines require a paralleism of several
hundred independent mstructions to saturate the
pipeline. Arvind et al.'' have computed, for example,
that for a data flow machine with 100-microzecond inter-
processor communication time and §4 processing units,
each of which performs a floating-point operation in 10
microseconds, the degree of parallelism to keep the ma-
chine saturated &5 640. To date, the only programs with
such a high degree of paralleliom are compurationally in-
tensive numerical calculations that operate on large ar-
rays of data. Unfortunately, data flow machines do not
handle arrays of data very efficiently because of their em-
phasis on fine-grain, operation-level concurrency.

Structures storage. [f tokens are allowed to carry vec-
tars, arrays, and other structures in general, theresultis a
large transmission and storage overhead. This 5 par-
ticularly the case when operators modifly only a small part
{possibly only one clement) of the whole siraciore. For
this reason, Dennis® suggested that all structures be
represented by a finite, acyclic, directed graph having one
or more rool nodes arranged so that each node can be
reached over some directed parh from some root node
{that is, a forest of tress with possibly common nodes).

Arrays are stored as trees, with array elements at the
leaves. For example, an array A =[g; ). 1 sijs3canbe
stored s a ternary tree. Obviously, trees of any ordercan
be used for storing arrays.

According to the functionality principle of the data
flow model, a data structure must be free of any side-
effects. An easy way to accomplish this is to forbad anv
sharing or overlapping of structures. Since every structure
would have its own private area of memory, there would
be no side effects. However, this is prohibitively expen-
sive since it reguires each structure 10 be completely
copied whenever its value s duplicaied. The solution pro-
posed by Denmnis is to share the stroctures whenever possi-
ble and use the reference count technigue. Each nodeofa
structure has a reference count, whiach 1s the total number
of pointers to that node from octher nodes and tokens in
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the daza flow program. For example, if 2 copy Bof the ar-
rav A is created, the pointer for 8 points 1o the same root
node as the painter for A (Figure 4a).

When an APPEND operator 35 used, it s necessary 1o
copy all nodes with a reference count greater than one, as
well as their successors, on the directed path from the root
10 the selecied node. For example, if an array B’ is ob-
tzined from B by seming @y =0, the structure in Figure £b
will be generated. Similarly, B' " can be obtained from B
by sesting @3 =0 (Figure 4c). The above rwo operations,
setting a; =0 and g3; =0, are completely independent of
each other bur cannot be executed concurrently; by the
asynchrony principle of the data flow model, concurrent
execution could result in two different structures, B* and
B’ (Figure 4d), from which it is very difficult 10 obtain
P

Here we see that a simple operation, such as seiting a
fow or a column in 2 maivix (o 2e70, Tequires sequentizl
execution, which in turn sigrificantly degrades perfor-
mance for large structures. The performance degradation
can come from two independent mechanisms used in this
scheme. The first mechanism uses the reference count 10
share data. Therefors, there will be many uUNneCcessary ac-
cesses 10 the memory in order to change the reference
cont without using data This occurs for all operations
that creste or destroy pointers. For example, when a
SWITCH operator destroys a token, the count must be
decreased. The second mechanism wses tree SITLCIUNES 10
srore arrays. If the order of the tree is small, large arrays
will be szored as trees of considerable depth and therefore
many memory references will beneeded 1o access an array
element. On the other hand, there is an unnecessary data
transmission and wasted space due 10 excessively large
memory blocks when the order is large.

To avoid the excessive storage demand and slow accsss
time due to the functional semantics of the data structure
operations, Arvind and Thomas™ proposed I-structures,
array-like data strisciures whose siorage i allocaied
before expressions to produce them are invoked. Sincean
I-structure construction is not strictly ordered {10 im-
prove parallelism), i is possible that pant of 2 program
might anempe to read an clement before that element’s
creation. Therefore, 2 presence bit is associated with
every element, and an attempt 10 read an empty location
causes deferral of the read operztion. Unfortunately,
when the element is finally created all deferred reads musz
be executed. Checking for those deferred reads on every
write slows down the access of [-structures in COmMpanson
with the simple von Neumann model and 2 language
based on it, in which the programmer has some control
ower SIOTRgE.

Basically, two observations can be made:

{1) Instead of sending data in only one direction—{rom
place of creation to place of consumption—a reguest | ad-
dress in the von Neumann model) must be sent in one di-
rection, with the I-structure value {data) returning in the
peher direction. This unmecessarily increases traffic
through the system

(2] Since memory is allocated before it is wsed, the prob-
lem of optimally distributing I-strociures over many pro-
pessors to mimimize traffic throogh the nerworks has been
introduced. This problem, well known as the memory
confention problem, has plagued designers of wector
machines and mulisprocessors for years.

in summary, the proposed I-structures, although ex-
pected to solve daia storage and access problems more ef -
ficienily, are 2 small step back toward the von Neumann
model_

Figure 4 Storage scheme for a 3 = 3 array.
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Data flow languages

The success of any computer, data flow or otherwise,
depends on the quality of its programming languapges.
Data flow machines demand high-level languages, since
graphs, their machine language, are not an appropriate
programming medium; they are error-prone and hard 10
manipulate.

Three high-level language classes have been considered
bv data flow researchers. The first is the imperarive class.
For instance, the Texas Instruments group considered the
use of 2 modified ASC Fortran compiler for their daia
flow machine.'? Compiler technigues for the translation
of imperative high-level languages into data flow graphac
languages have also been studied 3t lowa State Univers-
tv.'® The second is the funcrions! class. Bv functional
languages, we mean those resembling pure Lisp, which is
based on Church’s lambda calculus, and Backus' FP,
which is based on Curry's combinatory logic. This second
class is now being studied in a2 data flow comtext at the
University of Litzh.!*

The third class—our focus here—conssts of the so-
called date flow languages, which are designed with data
flow machines in mind. The most notable examples are
Id.%2 LAU. and Val.' The syntax of these languages is
essenially that of imperative languages. For example, all
daiz flow languages include |F and LOOP scatemenzs. On
the other hand, their semaniics are basically that of func-
tional languages.

Below, focus on the two characteristics thar ser data
flow languages apar: the fenctional semantics of the
language and the imphicit expression of paralielism. Daia
flow languzpes have many other charactensnics, which
are not umique. For example, the freedom from side ef-
fects and the locality of effects have been mentioned as
being of paramount imporiznce,!” and we agres.
However, some imperative languagss possess these char-

ACIeristics.

Functional semantics. A consequence of this first
charactenistic is that in data flow languagss varables
stand for values and not for memory locations. Impera-
trve languages Gke Forran, PL/L. and Pascal allow pro-
grammers [0 be aware of and have some comtrol over the
primary memory allocation for both programs and data.
Thus, in PL/T we can classify varizbles as siatic or
dynamic, and memory can be explicitly requested and
freed.

In data flow and funciional languages, on the other
hand, programmers deal only with valwes. These lan-
puzpes donot allow the explicit controld of memory alioca-
tien, relving mstead on mechanisms like garbage collec-
2om to keep memory utilizanon ar a reasonable level.

Functional semantics offers parallel processing the ad-
vaniage of a ssmplified rranslation process. Thus, daia
flow languages are free of side effects. This makes it possi-
ble to translate subroutines separately, withou! unpecss-
sarily constraining parallefism. Again, freedom from side
effects is not unigee to data flow languapes; imperative
languages can also be side-effact free.

Another welcome conseguence of functional semantics
is the single assignment rule.’® Thanks to this rule,

parallefism is less constrained by anti dependences and
output dependences than it is in conventional imperative
languages. Consider, for example, the following Fortran
program:

1 A=D+1
F - B=A+1
3 A=

It is easy 1o see that statement 3 cannot be executed untl
statement 2 feiches A thar is, starsmemnt 3 is antidepen-
dent on statement 2. [n a daia flow language, the use of A
in statement 3 is not valid; a different variable must be
used in place of 4 to allow execution of statements | and 2
t0 be concurrent with statement 3.

On the other hand. 2 compiler can very easily rid im-
perative language programs of antidependences and out-
put dependences by using the ssmple transformation tech-
migues of renaming and expansion. Remaming, as its
mame imdicates, changes variable names to avoikd anti-
dependences and output dependences. This transforma-
tion would replace A in statement 3 with some other
variazble. To understand expansion, consider the follow-
ing Fortiran loop:

DO M 1=1.N
X=Al+1
{1 Bil)=X""2

The different iterations of this loop cannot be exscuted in
parallel, since there is only one memory location cor-
responding to X and because N locations would be need-
ed for all iterations to procesd in parallel. Afer expan-
siom, the scalar variable X would be replaced by a vector
of N elements, and the occurrences of X would be re-
piaced by X([F). This would allow parallelism, at the ex-
pense of using more memory. We have found these tech-
niques, as implemented in the Parafrase swstem.® 1o be
sueceessiul almost all the time.

Some data flow researchers have been unaware of this
fact. This has led them to believe that functionzl seman-
tics makes a big difference in terms of efficient parallel
object code, but thas does not seem 10 be true.

Consider the following guotation from Arvind. '®

A stramghsforward Foetran prograss would do this in the
following way.
C XIS5AN ARRAY OF N=2ELEMENTS
C Xi{l) AND XiN = 2) REMAIN COMNSTANT
Rl = N+I
DO MK = I, KMAX
DO Wil = L NI
1) = Xl + Xil =13

Yily = (X1
I0 CONTINUE
DO 15] = 2. Wi
XM = Yil)
15 CONTINUE
N CONTINUE 113

A compiler can casily generate good oode for 2 multiple
processor machine from the above program. Even iff 2 pro-
grammer & clever, and avosds copying array Y o X by
ywichang back and forth beyween X and Y, a veronzing com-
pier will be able 1o deal with #t effectively. However, if array
X 15 large, and 2 programmer decides to avoid using another
array Y altogether, the following program may resalt:
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NI = N+1
DO XE =1, KMAX
TI = Xi1)
T2 = XiI}

DO 181 =2 NI

Xil)=, (M1 + T2+ Xil + L]0/ 3.

1 = T}

T2 = Xil=1)
10 CONTINUE
2 CONTINUE 2)

It would be exiremely difficak for 2 compiler 1o detect 2

trancformation in which all the clemenix of array X are re-
laxed simultaneasty

When the last Fortran program is transformed by
Parafrase, the simple expansion technique leads 1o the
following program. It can be effectively executed in paral-
lel (loops 2, 3, and £ are dewected by Parafrase as vector
aperations).

Nl = N=1I
DO | I =1, EMAX
THI) = XII)
T2 = Xi2)
DO 2 =1,
T = 1)
DO 3 J =1,
3 THI+1)
DD 4 J =1,
XiJ=1) = (TIJ) + TXDN = X =203

4 CONTINUE

1

MiJ=-2)

£

T

7w

T}

The [unctionz]l semantics might have advantages
besides those related 1o parzlle]l processing. For exampie,
data flow languages might help produce programs that
are easter 10 verify and understznd than thoss in impera-
tive languapes. But so far, no scientific evidence has besn
produced 1o cither confirm or deny such advaniages.

Our mzin objection to funcrional semantics & that it
denies the programmer direct control of memaory alloca-
tion. Thus, the snccess of data flow languages depends on
how efficiently garbage collection can be implemented
and on the specific compiler algorithms wsed 1o comtrol
memory allocation.

Implicit parallelism. The second characieristic s that
paralielism is often implicit in data flow languages. Thus,
a daa flow language compiler must compute the flow de-
pendences and usc them to generate paralle]l machine
code. Implicit parzllelism is 2 worthy goal; it can save the
programmer tedious, error-prone tasks. However, we
would fiks to make some observations on compiler tech-
nigues and on the need for explicit parallefsm.

Compiler techmigues. The algorithms used by a data
flow compiler determine how much implicit parallelism
can be exploited. Therefore, implicit parallelism and
compiders must be discussed together. The data flow
Hlerslure discusses two compiler technigues: flow
dependence computation and locp unraveling.? These
technigues mus: be developed fumber if data flow com-
pillers are 10 successfully explofl imphicit parallelism.

Flow dependence is computed by using variable names
oaly. It is very imporiant, however, to look at subscripis,
as well. Consider, for example, the Foriran program i
Figure 5a. A compiler that ignores the subscripts will not
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detect the paralieliem in this program. Furthermore, the
application of loop unraveling when the target machine is
2 data flow multiprocessor requires some study. Now
consider the Fortran program in Figure 5b. 1 the dif-
ferent fierations of the mner loop are distributed across
the data flow processors, a speed-up on the order of N
could be obizined. However, if the distribution is done on
the basis of the outer loop, and Mis much smaller than the
number of processors, the speed-up will be substantizlly
smaller.

There 2re other important technigques that are not dis-
cussed im the data flow literature. These include tech-
nigues for handEng memory allocation and deallocation
for code and datz (see “*functional semantics,™ above)
and technigues that define the sioraps layout of arrays
when the targel machine is a multiprocessor.

Explici vs. implicit paraliefism. Implicit paralielism is
nod sufficient for a powerful programming langnage, for
at least two reasons. The first is the spurious flow
dependences mentioned zbove, and the second is 1he need
o express in summary form the parallsl evaluation of
PECUTTENCES.

Spurious flow dependences are due to the limitations of
the compiler. Some can be removed by improving the
compiler alporithms; others might be impossible 1o re-
move. The discussion of Figure 3a, above, provides an ex-
ample of how 10 remove hmitations by Improving the
compiler algorithm. An example in which the limizations
cannot be removed is shown in Figure S5c. The Forran
program in this figure is the same as the one in Figure 5a,
except that 1 is replaced by W(K). Since W(K) is not
known at compile time, iz is nol possible 1o determine how
or even if this program can be executed in parallel.

Paralls] execution is possible in cases fike the program
in Figure 5c. but only through explicht parallefizm. The
programmer might know thar Wi{K] is always less than
some small value and therefore know that the wavefront
algorithm™ can be applied successfully. In the LAU
language and in Val, the programmer could handbe this by
using the FORALL conmstruct or the EXPAND con-
strucls. However, it it nol possible 1o handle this problem
in Id, which has no form of explicit paralielism.

\a} M 1 I=1.N
D0 11 J=1.N
AlLJ =A0K1 J)+ ML)

[[=1] oo 12 =1, M
m 2 =1\
ALJ =Al-1 51+ 1

fef DO

b

3 i=1N
D0 13 J=1.M
A1) = A{1-WI)LJ) =+ S{1LI-NK])

Figure 5. Foriran programs: (2) requiring subscript analy-
sis for paralelism detection: (b) with inner locp parallel
and outer loop sequential: {c) with paralbelism that cannot
be detected by a compiler.
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It showld be clear from the previous example that data
flow languages nesd better ways 10 express general forms
of parallelism. It is not clear what those constructs must
be, and i is not clear that these constructs can be nicely in-
corporated in a data flow language.

Only the designers of ¥Val have recognized the need 10
express recurrences. However, they provide only reduc-
tion-type recurrencss such as sums and minimems. Ocher
tvpes of recurrences anse often enough to require their in-
clusion in 2 parallel programming language ' Examples
include general arithmetic recurrences and boodean recur-
rences originating from IF statements inside loops.

Comments. [t has been claimed that dara flow
languages have some advantages ower imperative lan-
guages for parallel processing and programming in gener-
al. Functional semantics, however, is not a rezl advan-
tage, since well-known compiler techniques applied to a
good imperative language zllow equal exploitation of
parallefism. Also, implicit paralleism requires transla-
ton techmigues as complicated as those used 10 extract
parallefism from imperative languagss. In fact, most of
the techmigues used in Parafrase™>! tp transizte Fortran
programs into paralle]l programs can be used without
change in data flow compilers.

Centzinly, data flow languages have nice features, such
a5 freedom from side effects, which are wery advanm-
tageous for the compiler writer and programmer. How-
ever, these do not justify the effon required for the intro-
dection of a totally new class of programming languages.
Clearly, imperative languages with these characteristics
can be designed.

The immensity of introducing a new language class
becomes clear when we consider all the work reguired
before dara flow lanpuapes stand a chance of becoming
common tools. This work must start with syntax; data
flow l=nguages are verbose. This verbosity might be a
conseguence of the syntactic similarity between data flow
and imperative languages. The language designers, sirv-
ing to make the semantic difference clear, imroduced
gnnecessary keywords like NEW in Id, and cumbersome
expressions ke Y[I:X{1)]in Valto denote anarray Y with
the fth slement replaced by X (I

Work is also necsssary in the area of explicit paral-
lelism. Data flow languages need constructs 1o specify
paralledism in 2 general form and to specifv general forms
of recurrences. Finally, the functional semantics could be
a source of difficulty, since it implies that memory alloca-
tion is not a concern of the programmer.

Conclusion

In all high-speed compuier systems, il is impomant 1o
achieve two goals:

(1) the discovery of as much potential simultzneity as
possible in the computations to be performed; and

(2} the delivery a1 runtime of as much of the potenrial
simulianeity as possible.

We have discussed various aspects of these points and
argued that data Mow researchers have done lintle 1o fur-

ther our understanding of the first. It would appear that
their contributions have been more concentrated on the
second poinz, but there are a number of shoricomings in
daia flow ideas in this regard . It is possible to design much
better machines than those available today—supersys-
tems, in fact—but by following a bottom-up approach,
the data flow people have made it difficult 10 reach their
gozl. Data flow notions are quite appealing ar the scalar
level, but array, recurrence, and other high-level opera-
nons become diffwcult 1o manage.

In pursuit of the first goal, data flow researchers have
introduced the concept of value instead of location into
high-level languages. In principle, this was a praise-
worthy move. From the compiler point of view, however,
there is lictle improvement over imperative languages. Ex-
plicit parallefism and nontrivial compiler technigues are
il needed, mostly becanse of array variables. |-sruc-
tures represent an attempt o free data flow languages
from these two concerns.!® They essentially allow the
flow dependencss between array element operanons to be
automatically satisfied at runtime. [t is unlikely, how-
ever, that such a mechanism will efficiently solve many of
the problems associated with flow dependence between
arrays.

We guestion whether programming language design, as
practiced by data flow researchers, is germane to the task
of high-speed computer desagn. We are nod prepared 1o
mak# a pronouncement on programming languages for
paralle] processing; both applicative and imperative lan-
guzges have advantages and drawbacks. We do, however,
have some guestions. First, are data flow languages
marketable? To date, the high-speed computer markes
has been dominated by conservatism and software com-
patibilitv. Can data flow lanzuages, as currently pro-
posed, overcome this conservalism? Second, will data
flow languaess enhance programmer productivity? (The
emphasis in imperative programming [anguage design
has also been toward increasing programmer productivi-
v.} Althoueh data flow researchers have made some
claims to thss effect, they remamn, 10 our knowledge, un-
substantiared.

An zlternative approach. A much betier approach 1o
successful high-speed machine design begins by acknowl-
edging that the programming interface 10 a high-specd
machine requires more lattude than is allowed by current
dara flow architectures. The following alternative incor-
porates that laniude. We define compound fumcrions
with the following propertics:

» They represent computational tasks for which good
speed-up can be achieved (in most cases) bv using
multipls processors.

* The compound operations that mmplement them
allow simple control of a substantial amount of hard-
ware in paralled.

¢ Fast compiler algorithms for deriving them from
programs can be written in ordinary sequential pro-
gramming languages.

Six such compound functions are discussed in Gajski et
al.Z: array operations, [Enear recurrences, FORALL
loops, pipeline loops, blocks of assignment sistements,
and compound conditional expressions.
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We can view a program as a dependence graph connect-
ing compound function nodes. A function dispatch unit
must schedule the execution of the compound function
nodes. Since the times required by the nodes can be deter-
mined at runtime, the function dispatch unit might be
considered a data flow machine. We call this a depen-
dence-driven computation Decause several tyvpes of data
and control dependence are used in determining the ex-
acution sSquenos.

Aswe return tothe second goal of high-speed computer
systems—the delivery of smultaneity a1 rondme—our
criticisms of data flow processing should be put in per-
spective. High-speed compuier architecture, in general,
has many flaws and weaknesses: Pipeline processors
often suffer from long start-up times, and parallel or
multiprocessors Can waste processor cvcles because of
mismatches berwesn machine size and problem size. I is
very difficult to design 2 multipurpose machine that is
well-matched to 2 wide range of COmpULANOnS.

The scope of the problem is such that an appeal to engi-
neering intuition should be made at this point. Such an
zppeal yields three observations:

{1} Dependences should be attacked on all fronts, sub-
ject 1o sysiem design constrains.

{7} Designers should be guided by previously spocess-
ful designs, when such designs are consistent with the
overall constrainis.

{3) Deterministic analvsis and system operation should
be favored over probabilistic analysis and sysiem 0peTa-
non.

With regard 1o point |, some data flow rescarchers have
ignared explicis paraliehsm, and most have considered
compiing technigues only superficially. With regard to
paint 2, data flow ressarchers often claim that an entirely
new approach to high-speed computation is needed. The
frequent occurrence of such constructs as array and
recurrence operations, howsy er, justifics the exploitation
of well-known designs for conflict-free memory BCCESS
and centrally synchronized global instructions. Adher-
ence 1o point 3 can guaraniee rather than maximize the
ikelihood of good system performande. In regard 1o all
these aspects, data flow researchers tend not toexphoit the
global regularity in the problem because the focusisona
small granularity.

Summary of arguments. The following s a brief sum-
mary of the arguments agamnst the data flow approach
with respect to the principal architectural components in
2 high-speed computer Sysiem.

First, consider main memory array afcess, which s by
far the biggest bandwidth koad in many compinathons.
Well-known methods can achieve conflict-free array ac-
cess: they have been demonstrated in the Burroughs
BSP.»* While data flow people claim to be trying o
diminate the von Neumann bottleneck®® between CPU
and memory, they have created several new boulenscks
of their own. Array access conflicts arise due 10 asym-
chrony, shared data cannot be accessed in parallel, unnec-
essary memory accesses can arise, and tree-like storage of
arrays can lead to multiple accesses per amay element.
Furthermore, data flow programs tend 10 wasie MEMOTyY
space for programs and arrays.
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In the area of interconnection networks, daa flow ma-
chines with nontrivial parallefism (only four-procsssor
machines have been built) will have the same types of
problems found in other architectores. No interesting
pew resclts in this ares have come from data flow re-
scarchers; the problem TEmains an important one.

With respect 1o processing speeds, data flow architec-
tures seem o inherently deliver less than maximum speed-
ups. Control enit pipelining and instruction look-ahead
cannot be exploited to the degree they are in other ar-
chitectures. Furthermore, since data paths contain very
long pipelines, data flow machines suffer from the same
Jong pipeline-filling problems as other pipelned pro-
cessors, and one must sextle for less than maxithum spead-
up. Thus, the performance is wesk for programs with low
parallefism.

Several practical aspects of dala flow machines are
worrisome. To date, no one has proposed 2 way 1o handle
input/output operations, although they seem to be solv-
able, and debugging data flow programs could be diffi-
cult. We have already remarked on the guestionzble mar-
ketahility of a daza flow processor. As far as we know,
there is no difference berween the ability to implement 2
highly parallel data flow processor {with its global arbitra-
tion and distribution networks) using present VLSI
iechnology, and the ability to Implement 2 more conven-
tional machine. Finally, there has been no discussion of
the diagnosability and maintainability of data flow ma-
chines. These could be difficult areas for machines
withou! program counters or dezerministic bebavior.

We have tried to level pointed criticism directly ar data
flow principles or a1 least al 2 majority of data flow
syszems. Our task was complicated b several factors. The
design of a computing system from langunage to machine
covers a lot of ground, 2nd some researchers gloss over
some aspects of the problem. Several groups have inde-
pendenzly interpreted data flow principks with different
design goals, and these goals are not always spelled out.
Finally, a paper design is rarely as good as a practical im-
plementation. Hence. we have had a difficalt time dis-
cerning exactly what the data flow principles are.

Although we have airempled to poimnt oul weaknesses,
we should 2dd that data flow does have 2 good deal of po-
tential. In small-scale paraliel sysiems, daia flow prio-
ciples have been successfully demonsirzted. When simul-
taneity is low, irregular, and runtime-dependent, data
flow might e the architectore of choice. In very large-
scale parallel systems, data flow principles still show some
potential for high-level control. When severzl compound
funciions are to be exscuted in parallel, daa flow offers
eome software enginecring benefits, such as slimination
of side effects.

It is in medium-scale parallel systems that data flow has
little chance of success. Pipslined, parallel, and multipro-
cessor systems are all effective in thisrange. Fordata flow
processing to become established here, its inherent ineffi-
ciencies musz be overcome.

Mos: data flow researchers are engaged at 100 low 2
tevel of abetraction in dealing with dependence graphs
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and their relations 10 machines. They have placed much
importance on language design tssues thas are not always
nherently tied to their architecture. While they
somelimes imply a radically new approach to high-speed
computation, they are plagued by Ws standard
problems. B
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