
A Characterization of Processor Performance in the VAX-1 l/780 

Joel S. Emer 

Digital Equipment Corp. 
77 Reed Road 

Hudson, MA 01749 

ABSTRACT 

This paper reports the results of a study of VAX- 
llR80 processor performance using a novel hardware 
monitoring technique. A micro-PC histogram 
monitor was buiit for these measurements. It kee 
count of the number of microcode cycles execute z( 

s a 
at 

each microcode location. Measurement ex eriments 
were performed on live timesharing wor i loads as 
well as on synthetic workloads of several types. The 
histogram counts allow the calculation of the 
frequency of various architectural events, such as the 
frequency of different types of opcodes and operand 
specifiers, as well as the frequency of some 
im lementation-s ecific events, such as translation 
bu h ?p er misses. he measurement technique also 
yields the amount of processing time spent, in various 
activities, such as ordinary microcode computation, 
memory management, and processor stalls of 
different kinds. This paper reports in detail the 
amount of time the “average’ VAX instruction 
spends in these activities. 

1. INTRODUCTION 

Processor performance is often assessed by 
benchmark speed, and sometimes by trace-driven 
studies of instruction execution: neither method can 

‘ve the details of instruction timing, and neither can 

r P 
e ap lied to operating systems or to multiprocessing 

work oads. From the hardware designer’s or the 
computer architect’s point of view, these are serious 
limitations. A lack of detailed timin information 
im airs efforts to improve processor pe 

cf 
l-7 ormance, and 

a ependence on user program behavior ignores the 
substantial contribution to system performance made 
by operating systems and by multi-processing effects. 

In this pa er we use a novel method to 
characterize V i X- 1 l/780 orocessor uerformanee 
under real timesharing workloads 1131. Our main 
goal is to attribute the time spent in instruction 
execution to the various activities a VAX instruction 
ma 
cat % 

engage in, such as operand fetching, waiting for 
e and translation buffer m&se?, and unimpeded 

microcode execution. Another goal IS to establish the 
frequency of occurrence of events important to 
performance, such as cache misses, branch 
Instruction success, and memory operations. 
Throughout this paper we will report most results in 
frequent 
a good c i: 

or time per VAX instruction. This provides 
aracterization of the overall performance 

Douglas W. Clark 

Digital Equipment Corp. 
295 Foster Street 

Littleton, MA 01460 

effect of many architectural and implementation 
features. 

Prior related work includes studies of opcode 
frequency and other features of instruction- 
processing [lo. 11,15,161; some studies report timing 
Information as well [l, 4,121. 

After describing our methods and workloads in 
Section 2, we will re ort the frequencies of various 
processor events in 5 ections 3 and 4. Section 5 

resents the complete, detailed timing results, and 
!!I ection 6 concludes the paper. 

2. DEFINITIONS AND METHODS 

2.1 VAX-l l/780 Structure 

The llf780 processor is composed of two major 
subsystems: the CPU pipeline, and the memory 
subsystem. These subsystems and their constituent 
components are illustrated in Figure 1. The CPU 
pipeline is responsible for most of the actual 
mstruction execution, and as is shown, consists of 
three stages. The operation of the CPU pipeline may 
be most easily understood by noting that VAX 
instructions are composed of an opcode followed by 
zero to six operand specrfiers, which describe the data 
operands required by the instruction. The 111780 
implementation of the VAX architecture breaks the 
execution of an instruction into a sequence of 
operations that correspond to the accessin of the 
data operands of the instruction and a t en its 
execution. In eneral these o 

d 
erations correspond to 

the tasks that ow down the C # U pipeline. 

The individual stages of the CPU pipeline are: 
the Z-Fetch stage, which sequentially fetches the 
instruction stream into the Instruction Buffer or IB; 
the Z-Decode stage, which takes instruction bytes 
from the IB and decodes an oocode and/or specifier, 
determines a microcode disp’atch address -for the 
EBOX, and extracts additional s 
that Is used by the EBOX; an B 

ecifier information 
the EBOX stage, 

which is a microcoded function unit that does most of 
the actual work associated with fetching operands 
and executing instructions. In fact, the EBOX and 
the I-Decode stages are very tightly coupled, so that I- 
Decode o 

F 
erations only take place under s 

i! 
ecific 

control o the EBOX. The first I-Decode or an 
instruction cannot occur until the previous 
instruction has been competed, so the EBOX 

0194-7: 11/84&000/0301$01.0061984 lIZI% 

214 



FIGURE 1 

VAX-l l/780 Block Diagram 

? 
+ EBOX 

Cnche Write 
Memory Buffer 

47 

T Address 

+ ‘I 

Read/Write SBI 
D8b 

experiences a single non-overlapped I-Decode 
operation cycle for each instruction. 

The EBOX can perform a number of autonomous 
operations, such as arithmetic and boolean 
computations; it can command the I-Fetch unit to 
start fetching at the tar et of a branch instruction; it 
can command reads an % writes of memory data; and 
as a stage of the CPU pi eline, it can branch to a 
microinstruction location etermined by the I-Decode ff 
stage. In this final instance it may have to wait as a 
result of a pi eline delay if the I-Decode stage has not 
yet been ab e to compute the desired location. We P 
will call this delay an IB stall. 

As the EBOX contains the microcode and does 
the majority of the instruction computation, we will 
be focusing mainly on its activity. We use the EBOX 
microinstruction time of 200 nanoseconds as the 
definition of a cycle. 

In the process of instruction execution by the 
CPU pipeline, both the I-Fetch and EBOX stages may 
make references to memory. In order to support the 
virtual memory of the VAX these references must 
first pass throu h a translation buffer, or TB, where 
the virtual a f dress generated by the CPU is 
translated into a physical address. A successful 
translation is called a TB hit, and conversly a failed 
translation is called a TB miss. In the event of a TB 
miss for an EBOX reference, a microcode interrupt is 
asserted and a microcode routine is invoked which 
inserts the desired translation into the TB. In the 
event of a TB miss for an I-Fetch reference, a flag is 

set; when the EBOX finds insufiicient data bytes in 
the II3 to do a desired decode, it recognizes that the 
flag is set and again goes about the task of putting the 
appropriate translation into the TB. 

After successful translation by the TB, the 
physical address that was generated is used to access 
the data cache. Just as with the TB, we can have 
cache hits and misses. In the case of a read hit, data 
is simply passed back to the requesting unit. In the 
case of a read miss, a reference is made over the 
backplane bus, called the SBI for Synchronous 
Backplane Interconnect, to fetch the data from 
memory into the cache and to forward it to the 
requesting unit. Durin 
read from memory on be % 

the time the data is being 
alf of an EBOX request the 

EBOX itself is read stalled waiting for the data, while 
during I-Fetch requests the EBOX is free to run 
unimpeded unless it too needs data from memory. A 
read operation which results in a hit in both the TB 
and cache consumes one cycle. 

Only the EBOX is capable of doing data writes, 
and the 111780 im lements a write-through memory 
scheme in which al P data writes are passed throu 

8 
h to 

the memory via the SBI. Just as with reads, the B is 
used to generate a physical address for the reference. 
In order to avoid waiting for the write to complete in 
memory the lll780 provides a 4-byte write buffer. 
Thus it takes one cycle for the EBOX to initiate a 
write and then it continues microcode execution, 
which will be held up in the future only if another 
write request is made before the last one completed. 
The delay caused when a write encounters another 
write in progress is called a write stall. In addition, 
during a data write, the cache is accessed to u date 
its contents with the data being written. K- ote, 
however, that if the write access misses, the cache is 
not updated. 

2.2 Methods: Micro-PC Histogram Technique 

Our measurements were collected with a special 
urpose hardware monitor that enabled us to create 

ii* istograms of microcode execution in the 11/780 
processor. This UPC monitor consists of a general 
purpose histogram count board, which has 16,000 
addressable count locations (or histogram buckets), 
and is capable of incrementing the count in a selected 
location at the microcode execution rate of the 780. A 

P 
rocessor-specific interface board was also required. 
t provided the address of a histogram count bucket 

and control lines to signal when a count should be 
made. For these experiments the interface board 
addressed a distinct histogram bucket for each 
microcode location in the processor’s control store, 
and a count was taken for each microinstruction 
executed. 

The histogram collection board was designed as a 
Unibus device, and Unibus commands can be used to 
start and stop data collection, as well as to clear and 
read the histogram count buckets. Coincidentally, 
since the 11/780 has a Unibus, the histogram 
collection monitor could be installed directly on the 
system being measured, obviating the cost and 
nuisance of using a second machine for the hardware 
monitor. This was a further convenience as the data 

275 



collected was immediately available on a machine of 
sufficient capacity to do the data reduction. Note, 
however, that while actually monitoring microcode 
execution, the data collection hardware is totally 
passive, causing no Unibus activity and having no 
effect on the execution of rograms on the system. 
Thus this technique yiel s s measurements of all 
system actruity at full speed 

The capacity of the counters on the histogram 
collection board were sufficient to collect data for 1 to 
2 hours of heavy processing on the CPU. 

Since much of the activity in the 1 l/780 
is under the direct command of microcode unctions, P 

rocesaor 

the frequency of man events can be determined 
through examination o P the relative execution counts 
of various micminstructions.The UPC histo am data 
is especially useful, since it forms a genera Y resource 
from which the answers to many questions 
concemin 

B 
the operation of the 11/780 running the 

same wor load can be obtained simply by doing 
additional interpretation of the raw histogram data. 

One disadvantage of this method of hardware 
monitoring lies in the fact that certain hardware 
events are not visible to the microcode. For example, 
the counts of instruction stream memo references 
are not available, because they are made T y a distinct 
portion of the processor not under direct control of the 
microcode. Another is that to save microcode space, 
the microprogrammers frequently shared 
microinstructions; in such cases we cannot usually 
distinguish the sharers. A third disadvantage of this 
measurement technique is that the analysis produces 
only average behavior characterizations of the 
processor over the measurement interval, since no 
measures of the variation of the statistics during the 
measurement are collected. 

The UPC histogram measurements were taken in 
two different experimental settings: live timesharing, 
and synthetic workloads. The live timesharing 
measurements were taken from two different 
machines within Digital engineering. The first 
machine belonged to the research group, and was 
used for eneral timesharing and some performance 
data ana ysis. Its workload consisted of such things P 
as text-editing, program development, and electronic 
mail. It was relatively lightly loaded during the 
measurement interval, with approximately 15 users 
logged in. 

The second timesharing measurements were 
taken from a machine being used by a grou 

pr 
in the 

initial stages of development of a VAX CP . The 
load on this machine consisted of the same type of 
general purpose timesharing as in the first 
experiment, with the addition of some circuit 
simulation and microcode development. This 
machine had a heavier load with appmximately 30 
users logged in during the measurement interval. 

Although realistic, these live timesharing 
workloads are difficult to characterize and are not 
repeatable, since the computational load varies 
greatly over time. A second experimental settin 
addressed this problem. In it, a Remote Termina 7 
Emulator or RTE 17. 141 provided a real-time 

simulation of a number of timesharing users 
connected to the VAX. The RTE is a PDP-11 with 
many asynchronous terminal interfaces; output 
characters generated by the RTR from canned user 
scri ts are seen as terminal input characters by the 
VA5 and vice versa. Three RTR-generated 
work’loads were measured: an educational 
environment, with 40 simulated users doing program 
development in various languages and some file 
manipulation; a scientificfengineerin 
with 40 simulated users doing scienti P 

environment, 
re computation 

and program development: and a commercial 
transaction-processing environment, with 32 
simulated users doing transactional database 
inquiries and updates. 

All five experiments lasted about one hour. In 
this paper we will report results for 1;Be composite of 
all five, that is, the sum of the live UPC: histograms. 

The VMS operating system (version 2115, 91 was 
used in all our experiments. The VM8 Mull process, 
which runs when the system is idle, was excluded 
from measurement because its trivial code structure 
(branch to self, awaiting an interrupt.1 would bias all 
per-instruction statistics in proportion to the idleness 
of the system. 

All of the VAXes had Floating Point 
Accelerators, and all had 8 Megabytes ofmemory. 

3. ARCHITECTURAL EVENTS 

An architectural eoent is an event that would 
occur in any implementation of the VAX 
architecture; an implementation event is one whose 
Occurrence depends on the particular implementation 
of that architecture. Thus, for example, a data- 
stream memory read is usually an architectural 
event, but a conse uent cache miss is an 
im 
an x 

lementation event. 737 e discuss the former here, 
the latter in Section 4. 

We will need to make certain assumptions about 
all VAX implementations for this distinction to be 
valid. We assume, for the purposes of our discussion, 
that: 

0 

0 

3.1 

All VAX implementations have 32-bit data paths 
to the closest level of the memory hierarchy 
(usually the cache). Since the VAX is a 32-bit 
architecture, this is a very minor restriction. 
This allows us to count architectural memory 
references by measuring hardware references in 
the 111780 implementation. 

All VAX implementations experience the same 
rate of operating system events. This allows us 
to treat instruction fre uency as an architectural 
concern, ignoring the act that an increased rate 7 
of, say, page faults would increase the frequency 
of instructions in the page fault routine. 

Opcodes 

VAX opcode frequency has been reported and 
discussed in other papers I4, 151. The UPC method 

276 



cannot distinguish all opcodes in the 11/780. The 

F 
redominant reason for this is that hardware is used 
or the implementation of some o code-specific 

functions. For example, integer ad l-f and subtract 
instructions use the same microcode, with the ALU 
control field determined by hardware that looks at 
the opcode. 

We can, however, report the frequency of groups 
of o codes. 
wor E 

Table 1 shows this for our composite 
load. The following observation about this table 

is by now almost a cliche: moves, branches, and 
simple instructions account for most instruction 
executions. It will turn out, however, that some of the 
rarer, more complex instructions are responsible for a 
great deal of the memory references and recessing 
time; this point has also been made before P 121. Note 
that VAX subroutine linkage is quite simple, 
involving only a push or pop of the PC together with a 
jump; procedure linkage is more complex, involving 
considerable state saving and restoring on the stack 
16,131. 

A particularly interesting opcode-oriented 
performance measure is the frequency of PC- 
changing instructions and the proportion of 
conditional branches that actually do branch. In 
Table 2 below we show these figures for the composite 
workload. The u er section of the table consists of 
members of the S BP LE group of Table 1. Because of 
microcode-sharing, two unconditional branches 
(BRB and BRW) are grouped with simple conditional 
branches. We believe from other measurements that 
these are about 2 percent of all instructions, leaving 
about 17 percent due to true conditional branches. 
The remaining rows are the PC-changin 
instructions from the FIELD, CALL/RET an f 
SYSTEM instruction groups. 

PC-char&n instructions are quite common, 
accounting for a En ost 40 percent of all instructions 
executed in the composite workload. Furthermore, 
the proportion of these that actually change the PC is 
also quite high. Both properties are in line with other 
measurements of such instructions, both in the.VAX 
and other architectures. Note that about 9 out of 10 
loop branches actually branched. Therefore the 
average number of iterations of all loops that used 
these instructions was about 10. 

3.2 Operand Specifiers 

VAX instructions specify the location of their 
data through one or more encoded operand specifiers 
that follow the o code in the I-stream. These 
indicate, for examp e, whether a read o P erand is to be 
found in a register, or in memory a x dressed by a 
register, or with a variety of other addressing modes 
[6,13 J. The data type (byte, lon ord, floating-point, 
etc.1 and access mode (read, mo 

%l 
‘f write, etc.1 of an 

operand specifier are defined by e instruction that 
uses it. Branch displacements are considered 
separately. 

In the 111780 microcode, all access to scalar data, 
and to the addresses of non-scalar data, are done by 
specifier microcode. We thus consider the reading 
and writing of scalar data, and the address 

TABLE 1 

Opcode Group Frequency 

Group 
name Constituents 
I_________-_____________________________----- 

Frequency 
(Percent) 

FIELD 

FLOAT 

CALIJRET 

SYSTEM 

CHARACTER Char. string instructions 0.43 

DECIMAL Decimal instructions 0.03 

Move instructions 83.60 
Simple arith. operations 
Boolean operations 
Simple and loo branches 
Subroutine cal and return P 

Bit field operations 6.92 

Floating point 3.62 
Integer multiply/divide 

Procedure call and return 3.22 
Multi-register push and pop 

Privileged operations 2.11 
Context switch instructions 
Sys. serv. requests and return 
Queue manipulation 
Protection probe instructions 

TABLE 2 

PC-Changing Instructions 

Percent Act. branch 
Branch that 
‘I’upe %z.t 

as percent 
branch of all inst. 

------_------_-----____I__________ 
Simple cond.. 19.3 56 10.9 
plus BRB, BRW 

Loop branches 

Low-bit testa 

Subroutine 
call and return 

4.1 91 3.7 

2.0 41 0.8 

4.5 100 4.5 

Unconditional 0.3 100 
LJMP) 

0.3 

Case branch 
(CASEx) 

0.9 100 0.9 

Bit branches 4.3 44 1.9 

Procedure 2.4 100 2.4 
call and return 

(E;fMx, S stem branches RED 0.4 100 0.4 

TOTAL 38.5 67 25.7 

277 



calculation of non-scalar data, to be associated with 
operand specifier processing and not with the 
instruction itself. A simple integer Move, for 
example, is accomplished entirely by specifier 
microcode: first a read, then a write. 

The 1 l/780 specifier-processing microcode allows 
us to distinguish first specifiers, called SPECI (those 
that directly follow the opcodel from all other 
specifiers, called SPEC2-6. It also lets us count PC- 
relative branch displacements, which appear in the 
last specifier position of certain PC-changing 
instructions. Not all PC-changing instructions use 
branch displacements: some determine their targets 
with ordinary operand specifiers (e.g., JMP, CALLS), 
whp&vmd;ermine their targets implicitly (e.g., 

7 9 

Table 3 shows the number of specifiers and 
branch displacements per average VAX instruction. 

Table 4 shows the frequency of operand specifier 
types. Because of microcode-sharing, we are able to 
report the individual frequencies of the various types 
of memory-referencing specifiers only in the total 
column. Memory-referencing specifiers can 
optionally be indexed: the percentage of all specifiers 
thhteare indexed is shown in the bottom line of the 

. 

Register mode is the most common addressing 
mode, especially in specifiers after the first. Since the 
last specifier is generally the destination of the 
instruction’s result (if not a branch), this probably 
reflects a tendency to store results in registers. The 
encoded short literal, in which a single byte is 
expanded to one of a small number of values whose 
data type is instruction-dependent, is also quite 
common, particularly as the first specifier. We note 
the scarcity of immediate data ((PC)+), the other 
method of supplying I-stream constants to the 
instruction. 
fairly well. 

Short literals apparently do this job 

The most common memory specifier is 
displacement off a register. Other results [15] 
suggest that the displacement is most often a byte, 
less often a 4-byte longword, and least often a word. 
Index mode is surprisingly common: 6.3 percent of all 
specifiers were indexed. 

The average number of specifiers per instruction 
in the composite workload is 1.48 (remember that this 
does not include branch displacements). 

3.3 Memory Operations 

3.3.1 Data 

Operand-specifier processing accounts for a 
majority of the D-stream memory operations 
performed on the VAX. Most other reads and writes 
are due to the manipulation of non-scalar data such 

TABLE 3 

Specifiers and Branch Displacements 
per Average Instruction 

First specifiers 0.726 
Other specifiers 0.758 
Branch displacements 0.312 

TABLE 4 

Operand specifier distribution (percent) 

SPECl SPEC2-6 Total 

Register R 28.7 52.6 41.0 

yhor;;i;;d &+ 21.1 3.2 10.8 1.7 15.8 2.4 

Displacement 25.0 
ReuEDewred 

Disp.*Deferred 
i:: 

Absolute f :I 

kz-fetdef. - . 8:: 

Percent Indexed [RI 8.5 4.2 6.3 

as character strings and stack frames. Table 5 
reports the frequency of read and write operations per 
average instruction, broken down by the source of the 

ecifiers, procedure call and return 
instructions, whit ush and pop registers on and off 

the greatest portion of reads 
and writes. 

Because the results are in terms of events per 
average instruction, the number of reads reported for 
the CALLRET group, for example, is not the avera e 
number of reads executed by the average CAL &T 
instruction. Rather, it is the number of CALL/RET 
reads averaged over all instruction executions. Put 
another way, it is the number of CALURET reads 
weighted by the fre of occurence of 
instructions in the CAL roup. This way of 
looking at the data measures the 
contribution of the various instruction groups to 
overall performance. 

Overall, the ratio of reads to writes is about two 
to one. Some of these references are to 32-bit 
longwords that are unaligned with respect to the 
physical organization of the cache, and that therefore 
require two physical references. The frequency of 

278 



TABLE 5 

D-stream Reads and Writes 
per Average instruction 

Reads writes 

Specl .306 
Spec2-6 .148 

.029 .033 

.049 .007 

.ooo .008 

.133 .130 

.015 .014 

.039 .046 

.002 .OOl 

Other .062 .008 

TOTAL .783 .409 

unaligned D-stream references is ve 
K 

low: 0.016 per 
instruction in the composite workloa . 

3.3.2 Instructions 

Many memory reads are due to instruction 
fetching, but it is diEcult to characterize this in a 
strictly architectural way. Different organizations of 
the I-stream prefetching hardware can have very 
diflerent streams of references to memory. The only 
truly architectural feature of the I-stream references 
is the size of the instructions. The average size of an 
operand specifier can be calculated from Table 3, 
together with displacement fi ures (b 
longword) from [151, and is 1.68 % z 

te, word, 
ytes. T e average 

instruction has one byte of opcode, some number of 
specifiers, and some fractional number of branch 
displacements. Table 6 puts all of this together to 
show that the avera e size of a VAX instruction in 

5 our workload was 3.8 ytes. 

3.4 Other Events 

Two other interesting architectural events are 
interru ts and context switches. The latter are 
atxomp B shed by the save-process-context and load- 

recess-context instructions (SVPCTX and 
ED PCTX). In VMS these are used only for a switch 
from one user process to another; interrupts, in 

F 
articular, do not cause context switches. The 
nquency of these events is shown in Table 7. For 

ease of understanding we invert our usual metric and 
report these in terms of the average instruction 
headway between events. VMS sometimes services 
hardware interrupts by chaining together several 
successive1 
Table 7 inc udes the headway between requests for r 

lower-priority software interrupts. 

software interrupts. 

The context-switch figure is useful in setting the 
“flush” interval in cache and translation buffer 

TABLE 6 

Estimated Size of Average instruction 

Number Est. Size 
Object per inst Est. Size per inst. 
---__-___-----------_____________I______- 
Opcode 1.00 1.00 1.00 
Specifiers 1.48 1.68 2.49 
Branch disp. 0.31 1.00 0.31 
______-----____-_-______________________. 
TOTAL 3.8 

TABLE 7 

Interrupt and Context-Switch Headway 

Event Instruction 
headway 

-_______-_--__-__------------------------- 
Software interrupt Requests 2539 - 

Hardware and Software Interrupts 637 

Context Switches 6418 

simulations. The im act of context switching on 
VAX Translation Bu fp er performance is discussed in 
[31. 

4. IMPLEMENTATION EVENTS 

By an implementation event we mean an event 
whose occurrence depends on the particular 
implementation of the VAX architecture. A cache 
miss is an example; whether a memory reference hits 
or misses in the cache de ends on the size and 
configuration-indeed, even t% e presence--of the cache 
in a particular implementation of the architecture. 

4.1 I-stream References 

The 11/780’s Instruction Buffer or IB makes its I- 
stream referencing behavior implementation- 
specific. The 8-byte IB makes a cache reference 
whenever one or more bytes are empty. When the 
requested iongword arrives 
there was a cache miss the Ii 

ossibly much later, if 
accepts as many bytes 

as it has room for then. Thus the IB can make 
repeated references (as many as four) to the same 
lon ord, but this is clearly not a requirement of the 

F arc itecture. 

Because the IB is controlled by hardware, the 
UPC histogram technique cannot count IB references. 
But in our earlier cache stud 
average number of cache re erences by the IB per 1 

[2] we found that the 

VAX instruction was around 2.2, for three day-long 
measurements of live timesharing workloads. 

279 



Ion 
Since the average VAX instruction is 3.8 bytes 
(Table 6), we conclude that those 2.2 references 

yie B ded on average 3.8 bytes, for an average delivery 
per reference of 1.7 bytes. 

4.2 Cache And Translation Buffer Misses 

The 11/780 cache is controlled by hardware, so 
the frequency of cache misses is not measurable with 
the UPC technique. Our earlier cache study, 
however, found that in live timesharing workloads 
the number of cache read misses per instruction was 
0.28, with 0.18 due to the I-stream and 0.10 due to the 
D-stream. The performance cost of these misses is 
microcode stalls, which are discussed below. 

The virtual-to-physical address Translation 
Buffer, on the other hand, is controlled by microcode, 
and is therefore directly visible with the UPC 
technique. A TB miss results in a microcode trap to a 
miss service micro-mutine. Entries to this routine 
indicate occurrences of TB misses, and a count of all 
cycles within the routine yields the time spent 
handling TB misses. 

The TB miss rate for the composite workload was 
0.029 misses per instruction, 0.020 from the D-stream 
and 0.009 fmm the I-stream. The average number of 
cycles used to service a miss was 21.6, of which 3.5 
were read stalls due to the requested page-table 
entry not being in the cache. See [31 for more 
information on the performance of the VAX-lU780 
TB. 

43 Stalls 

A stall occurs when a microcode request cannot 
yet be satisfied by the hardware. The result is one or 
more cycles of suspended execution until the reason 
for the stall goes away. As described in Section 2.1. 
there are three types of stall in the VAX-l l/780: read 
stall, write stall, and IB stall. 

A mad stall occurs when there is a cache miss on 
a D-stream read. The requesting microinstruction 
simply waits for the data to arrive. In the simplest 
case (no concurrent memory activity of other types) 
this takes 6 cycles on the lU78Q Cache hits cause no 
Stalls. 

A write will stall if attempted less than 6 c ties 
a&r the orevious write (in the simolest case). t: AX 
instructions that do many w14te.s~ s&h as character- 
string moves, are sometimes mmroprogrammed to 
reduce write stalls by writing only in every sixth 
cycle. 

The last type of stall, IB stall, occurs when the IB 
does not contain enough bytes to satisfy the 
micmcode’s request. This can occur at an 
stream processing, including the initial d 

point in I- 
ecode of the 

opcode. specifier decodes, aid requests for literal or 
immediate data. Note that IB stall does not occur in 
direct response to an LB cache miss: only when the 
em 
sta 1 occur, and by then the cache miss may have P 

ty byte is actually needed by the microcode can 

finished. 

The occurrence and duration of all three types of 
stalls are implementation-specific characteristics of 
the VAX-lli780. The duration, but not the frequency 
of occurrence of all three can be measured with the 
UPC technique. The histogram board actually 
contains two sets of counts, one for non-stalled 
microinstructions. and one for read- or write-stalled 
micminstructions. If the microinstruction at address 
X does a cache read, then the non-stalled count at 
location X will contain the actual number of 
successful reads done by that microinstruction, while 
the stalled count at location X will contain the total 
number of cycles in which that microinstruction was 
stalled. Write stalls and read stalls are differentiated 
by whether the microinstruction does a read or a 
write (it cannot do both). 

IB stalls are handled in a slightly different wa . 
Bequests for bytes from the IB result in microco cr e 
dispatches; decoding hardware maps the IB contents 
into various dispatch micmaddresses, one of which 
indicates that there were insufficient bytes in the IB. 
The number of executions of the microinstruction at 
that microaddress is the number of cycles with IB 
stall. 

5. TIME: CYCLES PER INSTRUCTION 

The great strength of the UPC histogram 
technique is its ability to classify every processor 
cycle and thus to establish the durations of processor 
events. Table 8 shows the number of cycles per 
average instruction, arranged in two orthogonal 
dimensions. The first dimension (rows) represents 
the stages of an instruction’s execution: its initial 
Decode: then its onerand soecifier and branch 
&placement 

-r 
mcessihg; then i’ts execute phase: and 

finally severa overhead activities. 

Instruction decode, as discussed in Section 2.1 
above, takes exactly one EBOX cycle. but may stall if 
there are insufficient bytes in the IB. 

Operand specifier processing consists of address 
calculation for memory specifiers, and the actual read 
and/or write of data for both memory and register 
specifiers. provided the data is scalar. Branch 
dmplacement processing consists of the calculation of 
the branch target address, which requires one c cle. 
An additional cycle is consumed in the execute p 2: aae 
of the instruction to redirect the IB to fetch down the 
target stream. 

The execute phase of an instruction consists of 
those microcycles associated with an instruction’s 
actual computation. Table 8 reports these results by 
opcode group as defined in Table 1. 

The overhead activities are not associated with 
any particular instruction. They include interrupts 
and exceptions (I&Except), memory mana ement 
and alignment micmcode (Mem Mgmtl, an d abort 
cycles (one for each microcode trap and one for each 
microcode patch). 

The second dimension of Table 8 (columns) 
Classifies microinstruction execution into one of six 

280 



TABLE 8 

Average VAX Instruction Timing (Cycles per instruction) 

Compute Read R-Stall Write W-Stall IB-Stall Total _-________-____-_-_---_I__________________------------------------------ 
Decode 1.000 0.613 1.613 

pD5- 0.221 0.895 1.052 0.306 0.148 0.364 0.116 0.161 0.192 0.102 0.005 # 01226 

g$#” 0.870 0.482 0.049 0.029 0.017 0.058 0.033 0.007 0.027 0.002 0.977 0.600 
Float 0.292 0.000 0.000 0.008 0.001 0.302 
Call/Ret 0.937 0.133 0.074 0.130 0.134 1.458 

8lZ2iter Ei 0.015 0.039 0.031 0.014 0.046 0.028 0.004 0.522 0.506 
Decimal &026 0.002 %z . 0.001 0.002 0.031 

Int/Except 0.055 0.002 0.004 0.006 ‘0.071 

f;*MlwJt 0.127 0.555 0.061 8*X8i . 0.004 0.003 0.824 0.127 --__--______------------- -------------~--~~-~~~ 
TOTAL 7.267 0.783 0.964 0.409 0.450 0.720 10.593 

categories. The “Compute” category r;{rtse;; 
autonomous EBOX operations, 
microinstructions that do no memory references. ‘I%; 
other categories are memory references and the 
various types of stall. On the 111780 the six 
categories are mutually exclusive, so times in the 
individual categories can be summed. yielding the 
TOTAL column of Table 8. 

On the other hand, o 
will have a payof P 

timizing FIELD memory writes 
of at most 0.007 cycles per 

instruction, or only about 0.07 percent of total 
performance. 

A number of other observations can be made 
based on Table 8: 

With some minor exceptionst every micmcycle in 
11/?80 execution falls into exactly one row and 
exactly one column. The numbers reported in Table 8 
srs the numbers of cycles spent at each mw/coiumn 
intersection, divided 
instructions executed. 

b$ the number of VAX 
hey are therefore the 

numbers of cycles per average instruction for eae.h 
category. The mw and column totals.ailow analysts 
of a single dimension: for example, in the average 
instruction of 10.6 cycles, a (column) total of 0.96 
cycles were lost in read stall, and a (mw)~tctal of 0.20 
cycles were spent in floating-point executton. 

The average VAX instruction in this composite 
workload takes a little more than 10 cycles. This 
makes the numbers in Table 8 easily 
intepretable as percentages of the total time per 
instruction. 

The TOTAL column shows that almost half of all 
the time went into decode and specifier 
processing, counting their stalls. 

The opcode grou with the greatest contribution 
is the CALL/ Ip ET group, despite its low 
frequency (see Table 1). 

Table 8 shows where 11/780 performance may be 
improved, and where it may not be im roved. For 
example, saving the non-overlapped 1sI ecode cycle 
could save one cycle on each non-PC-than ing 
instruction. (The later VAX model llp150 did all ‘a.) 

The execution phase of the SIMPLE instructions, 
which constitute 84 percent of all instruction 
executions (Table 11, accounts for only about 10 
percent of the time in the composite workload. 

-0 mmarks on the operand-specifier portion of Table 8 
are necessary. First, the 11/780 has special hardware to 
optimize the exwution of certain instructions with literal or 
mgieter operands. In these cases the first cycle of exsadion is 
combined with the last cycle of specitier processing. We report 
SIX& cycles in the specifier rows of Table 8; they amounted to 
0.15 cycles per instruction for the SIMPLE group and 0.01 cycles 
per instruction for the FIELD group. The second remark 
concerns the treatment of tirst specifiers that are indexed. 
Microcode sharing forces use to report the calculation of the base 
address in the SPEC2-6 category. We extimate that this causes 
about 0.06 cycles per instruction belonging to SPECl to be 
reported in SPEC2-6. 

System and Character instructions, though rare 
(Table 11, also make noticeable contributions to 
performance. 

Most IB stalls occur on the initial specifier 
decode, rather than on subsequent specifier 
decodes. Although there are more bytes in the 
initial decode then the subsequent decodes, we 
interpret this to mean that most IB stall is 
incurred on cache misses at the target reference 
of a branch. 

We note that there are fewer cycles of compute in 
B-DISP than there are branch displacements (see 
Table 31, because the branch displacement need 

281 



TABLE 9 

Cycles per instruction Within Each Group 

Compute Read R-Stall Write W-Stall Total 
__-_______________-_______I_____________-------------------------- 
Simple 

% 
0.03 

::I 
0.03 1.17 

Field 0.71 
Float a:07 0.00 
Call/Ret 

EE 73:51 
4.14 

;:;M& 
K 
0:23 

0.04 8.67 
0.03 8.33 

22.83 1147 
4.03 45.25 

%!!Eter 8.97 0.71 10.76 0.67 :-z 0:97 117.04 24.74 

Decimal 84.37 5.64 1.59 3.94 5.24 100.77 
--------------______----- --_-_______-________________________I___-- 

not be computed when the instruction does not 
branch. 

A corn arison of the Read and Read-Stall 
columns of f able 8 yields another set of observations: 

o Stalled cycles are half the number of operation 
cycles in the CALLRRT group, but more than 
twice the number of operation cycles in the 

SE% E&y 
This is presumably due to the 
of the stack and the relatively 

poor locality of character strings. 

o Memory mana ement has more than 3 times as 
many read&a % ed cycles as reads. This largely 
reflects the tendency of references to Page Table 
Entries to miss in the cache. 

Comparin 
several more 0 6 

Write and Write-stall columns yields 
servations: 

o TheCALURET 
of write stalls. Et 

up generates a large amount 
‘s IS due to the write-through 

cache and the one-longword write butter, which 
force the CALL instruction to stall while pushing 
the caller’s state onto the stack. 

o Character instructions have little write stall, 
because as mentioned earlier, the microcode was 
explictly written to avoid write stalls. 

Table 9 shows the number of cycles per average 
instruction within each group, exclusive of specifier 
deccde and processing, and not weighted by frequency 
of occurence. For exam 
the Decimal group did i 

le. the average instruction in 

101 cycles overall. 
4 cycles of Compute and took 

Table 9 illustrates a number of interesting 
properties: 

o The computation associated with the average 
simple instruction is quite simple: a little over 
one cycle is all that it needs. 

0 However, the range of cycle time requirements of 
average representatives of these groups covers 
two orders of magnitude. 

o With around 4 reads and writes per average 
CALL/RET or PUSHR/POPR instruction we 
conclude that about 8 registers are being pushed 
and popped. 

o The average character instruction reads and 
writes 9 to 11 longwords, so the average size of a 
character sting is 36-44 characters. 

6. CONCLUSION 

We have presented detailed instruction timing 
results for the VAX-111780, evaluated under a 
timesharing workload. These results are, of course, 
dependent on the characteristics of that workload. 

The UPC histogram method has 
P 

rovided a great 
deal of useful data, showing precise y the impact of 
architectural and implementation characteristics on 
average processor performance. The generation of a 
UPC histo 
from whit i!f- 

provides the analyst with a database 
many performance characteristics can be 

determined. These analyses are particularly useful 
because they are all derived from the same workload. 

ACKNOWLEDGMENTS 

We would like to thank Garth Wiebe and Jean 
Hsiao for their assistance with the UPC histogram 
monitor development. 

282 



REFERENCES 

Alpert, D. Carberry, D., Yamamura, M..Chow, Y., and 
Mak. P32-bit Processor Chip Integrates Major System 
Functions. Electronics 56. 14 (July 14, 1983), pp. 113- 
119. 

Clark, D.W. Cache Performance in the VAX-11/780. 
ACM TOCS I, 1 (Feb. 1983). pp. 24-37. 

Clark, D.W. and Emer, J.S. Performance of the VAX- 
111780 Translation Buffer: Simulation and 
Measurement. Submitted for publication, Nov. 1983. 

Clark, D.W. and Levy, H.M., Measurement and Analysis 
of instruction Use in the VAX-Il/780. Proc. 9th Annual 
Symp. on Comp. Arch., Austin, April 1982, pp. 9-17. 

Digital Equipment Corp. VAXNMS Internals and Data 
Structures. Document No. AA-K785A-TE, Digital 
Equipment Corp., Maynard, MA. 

Digital Equipment Corp. VAX-11 Architecture Reference 
Manual. Document No. EK-VAXAR-RM-001, Digital 
Euipment Corp., Maynard, MA, May 1982. 

Greenbaum, H.J. A Simulator of Multiple Interactive 
Users to Drive a Time-Shared Computer System. M.S. 
Thesis, MIT Project MAC report MAR-TR-54,Oct.1968. 

Huck. J.C. Comparative Analysis of Computer 
Architectures. Ph.D. thesis, TR No. 83-243. Computer 
Systems Lab., Stanford, May 1983. 

Levy, H.M.. and Eckhouse, R.H. Computer Programming 
and Architecture: The VAX-11. Digital Press, Bedford, 
MA, 1980. 

Lunde, A. Empirical Evaluation of Some Features of 
Instruction Set Processor Architectures. CACM 20, 3 
(March 1977),143-153. 

McDaniel, G. An Analysis of a Mesa Instruction Set 
Using Dynamic Instruction Frequencies. Symposium on 
Architectural Support for Programming Languages and 
Operating Systems, Palo Alto, CA, March 1982, pp. 167- 
176. 

(11 

r21 

131 

I41 

151 

I61 

r71 

MI 

191 

HOI 

1111 

WI 

I131 

1141 

r151 

[I61 

Peutq B.L., and Shustek, L.J. An Instruction Timing 
Model of CPU Performance. Proc. 4th Annual Symp. on 
Computer Architecture, 1977, pp. 165-178. 

Strecker, W.D.. VAX-111780--A Virtual Address 
Extension for the PDP-11 Family Computers. Proc. NCC, 
AFIPS Press, Montvale. N.J.. 1978. 

Watkins, SW., and Abrams, M.D. Survey of Remote 
Te&aI Emulators. NBS Special Publication 500-4, 
April 1977. 

Wiecek, C.A. A Case Study of VAX-11 Instruction Set 
Usage for Compiler Execution. Symposium on 
Anzhitectural Support for Programming Languages and 
Operating Systems, Palo Alto. CA. March 1982. pp. 177- 
184. 

Winder,. R.O. A Data Base for Computer Performance 
Evaluation. IEEE Computer 6. 3. (March 1973). pp. 25- 
29. 

283 


