
Courtesy of Mr. Derrick Sines 
February 18, 2002 

CDA5106 
Homework #1 

Problems 1.1, 1.2, 1.6, 1.7, 1.8 
1.1  

a) For the graph the x and y values can be found easily by using the value of 20 for 
Speedupenhanced and the values 10, 20, and 30 for the percentage of vectorization or 
Fractionenhanced. 

 
Plugging these values into  
Net Speedup = 1/((1-Fractionenhanced) + (Fractionenhanced/Speedupenhanced)) 
Gives 

X Y 
10 1.105 
20 1.235 
30 1.399 
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b) Using Amdahl’s Law the following equation can be used: 

Speedupoverall = 1/((1 – Fractionenhanced) + (Fractionenhanced/Speedupenhanced) = 2 
 
Rearranging this to solve for Fractionenhanced gives the equation: 
Fractionenhanced = speedupoverall * speedupenhanced - speedupenhanced/ speedupoverall * speedupenhanced 
– speedupoverall 
 
So, 
Fractionenhanced =( 2 * 20 – 20)/(2 * 20 – 2) = .526 
 
Therefore, the percentage vectorization needed to gain a speedup of 2 is 52.6% 
 



c) 
Since the maximum speedup attainable would be 20, one-half of this value would be a 
Fractionenhanced = 10. 
So, 
Speedupoverall = 1/((1 – Fractionenhanced) + (Fractionenhanced/Speedupenhanced) = 10 
 
Rearranging this to solve for Fractionenhanced gives the equation: 
Fractionenhanced = speedupoverall * speedupenhanced - speedupenhanced/ speedupoverall * speedupenhanced – 
speedupoverall 

 
As above, 
Fractionenhanced = (10 * 20 – 20)/(10 * 20 – 10) = .95 
 
Therefore, the percentage vectorization needed to gain one-half of the maximum speedup 
attainable is 95%. 
 
d) 
Using the hardware doubling the following equation can be generated: 
Speedupoverall = 1/((1 – .7) + (.7/40)  
Solving the above equation gives a Speedupoverall of 3.149 
 
To find what percentage of vectorization would need to be achieved to match the hardware 
doubling method simply solve for Fractionenhanced as follows: 
Fractionenhanced = speedupoverall * speedupenhanced - speedupenhanced/ speedupoverall * speedupenhanced – 
speedupoverall 

               
              So, 
              Fractionenhanced = (3.14 * 20 – 20)/(3.14 * 20 – 3.14) = .718 
 

Therefore, a percentage vectorization of around 1% would match the hardware doubling 
technique. I would recommend using the compiler to crew to gain the extra 1% vectorization. 
 



1.2 
a) Speedup = Timeoriginal/Timeenhanced 

 
Since the speedup value is 10: 
.5Timeenhanced =(Fractionenhanced * Timeorginal)/10 
 
Solving for Percentageoriginal: 
Fractionenhanced = 10 * Timeenhanced/2 * Timeoriginal     (Equation 1) 
 
Since 50% of enhanced execution time is spent is used on the enhancement, the following can also be 
found: 
 
.5Timeenhanced = (1 – Fractionenhanced) * Timeoriginal 

 

 Plugging Fractionenhanced found in Equation 1 into the previous equation and solving for 
Timeoriginal/Timeenhanced yields: 
 

Speedupoverall = 5.5  

 
b) To solve the speedup found in 1.2a must be used with the equation: 

Speedupoverall = 1/((1 – Fractionenhanced) + (Fractionenhanced/Speedupenhanced) 
 
Since the speedupoverall is 5.5 and the speedupenhanced = 10 there is only one variable left to solve. The 
following equation can be used: 
5.5 = 1/((1 – Fractionenhanced) + (Fractionenhanced/10) 
 
Solving for Fractionenhanced the percentage can then be found. 

 
Percentage of original execution time: 91%  



 
1.6 
Execution time is the primary concern so the following equation should be used when making the decision: 
CPU Time = IC * CPI * Clock Cycle Time 
 
Starting with the un-optimized version we know that CPI is 1 so: 
CPU Timeun =  IC * 1 * Clock Cycle Time (Equation 1) 
 
We also know that the clock rate of the un-optimized machine is 5% higher than the optimized machine so: 
(100% - 5%)Clock Cycle Timeop = Clock Cycle Timeun  (Equation 2) 
 
The optimized machine does not execute 1/3 of the load and store instructions that the un-optimized 
machine does, and load and store instructions make up 30% of the total instructions so: 
ICop = .9ICun  (Equation 3) 
 
Using the equations above as well as information stated in the exercise the following equation can be 
constructed: 
 
CPUop = .9ICun * 1 * 1.05 Clock Cycle Timeun 

 

Now performance of the optimization can be compared with the un-optimized version by using the speedup 
equation of: 
 
Speedupoverall = (ICun * Clock Cycle Timeun)/(.9ICun * 1.05Clock Cycle Timeun) 
 
Solving the previous equation gives a Speedupoverall of 1.06. Therefore, by using the optimization technique 
a 6% increase in performance is realized. 



1.7 
a) MIPS = Clock Rate/(CPI * 106) 
   
       MIPSsoftware = (16.67 * 106)/(6 * 106)  = 2.8 
       MIPScoprocessor = (16.67 * 106)/(10 * 106) = 1.7 
 
b) Instruction Count = Execution Time * (MIPS * 106) 

 
Instruction Countsoftware = 13.6 * (2.8 * 106) = 3.8 * 107 

Instruction Countcoprocessor = 1.08 * (1.7 * 106) = 1.8 * 106 
        

c) Using the coprocessor because each floating point operation definitely corresponds to one 
instruction find the non floating point instructions: 

 
NFP = (Instruction Countcoprocessor) - Total Instructions (From Exercise) 
So, 
NFP =  (1.08 * 106) – 195, 578 = 1.6 * 106 

 

Floating Point Instructions = Total Instructions – NFP 
So, 
FPI = (3.8 * 107) – (1.6 * 106) = 3.6 * 107 
 
Instructions per floating point operation = Floating Point Instructions/ Floating Point Operations 
So, 
Instructions per floating point operation = 3.6 * 107/195,578 = 185 
 
Therefore, on average, in software 185 integer instructions are required to perform a floating-point 
operation. 

d) MFLOPS = Number of floating point operations in program/(Execution Time * 106) 
So, 
MFLOPS = 195,578/(1.08 * 106) = 0.18 
 



1.8 
a) To find the number of good dies per wafer use: 

Good Dies per Wafer = Dies per Wafer * Die Yield (Equation 1) 
Where 
Dies per Wafer = ((π *(Wafer Diameter/2)2) / Die area) - π * Wafer Diameter/(2 * Die Area)1/2 
And 
Die Yield = Wafer yield * (1 + (Defects per unit area * Die area)/α)-α 

 

Using a 20 cm wafer, a defect density of 1 cm2, α of 3, and a wafer yield of 95% the following 
table can be created by substituting these values into Equation 1 above. 
Microprocessor Dies per Wafer Die Yield Good Chips 
MIPS 4600 357 .48 171 
PowerPC 603 321 .45 144 
HP 71x0 128 .21 26 
Digital 21064 A 154 .26 40 
SuperSPARC/60 94 .15 14 
 

b) Using the good chip total found in 1.8a the die cost would be found by dividing the wafer cost by 
the total number of good dies per wafer. Doing this yields the die cost as illustrated below. 

 
            

Microprocessor Good Chips Wafer Cost Die Cost 
MIPS 4600 171 $3200 $18.7 
PowerPC 603 144 $3400 $23.6 
HP 71x0 26 $2800 $107.7 
Digital 21064 A 40 $4000 $100 
SuperSPARC/60 14 $4000 $285.7 

 
      c)    

To find the cost for each good, tested, and packaged good use the values found above in part a and 
b.  
Microprocessor Die Cost Testing  Packaging Total Cost 
MIPS 4600 $18.7 $1.7 $12 $32.4 
PowerPC 603 $23.6 $2 $20 $45.6 
HP 71x0 $107.7 $7.9 $70 $185.6 
Digital 21064 A $100 $5.1 $50 $155.1 
SuperSPARC/60 $285.7 $6 $30 $321.7 
 

    Testing is calculated using: 
    Testing Cost = (Hourly Cost/Time Unit)/Die Yield 
 
d) 
Solving this problem involves doing the same steps as in part a and b above. Instead of using a defect 
density of 1 cm2, defect densities of .6 and 1.2 cm2 can be used. Then step c is repeated in the same 
fashion using the new data. 
 
Following these steps yields the following: 
Defect Density 
(cm2) 

Packaging Die Cost Testing Cost Total Cost 

.6 30 $157.6 $3.3 $190.9 
1.2 30 $386.8 $8.1 $424.9 
  

 
 



 
e) 
Solving this problem involves following the steps laid out in parts a – c. Instead of using a defect density of 
1 cm2 this problem uses  a defect density of .8 cm2. The steps laid out in parts a – c should be repeated for 
two α values of 3 and 4.5. Solving the steps laid out above with these new values yield the following: 
 
α Packaging Die Cost Testing Cost Total Cost 
3 $50 $80 $3.9 $133.9 
4.5 $50 $83.8 $4.2 $138 
 
 


