
Courtesy of Mr. Derrick Sines
February 18, 2002

CDA5106
Homework #1

Problems 1.1, 1.2, 1.6, 1.7, 1.8
1.1

a) For the graph the x and y values can be found easily by using the value of 20 for
Speedupenhanced and the values 10, 20, and 30 for the percentage of vectorization or
Fractionenhanced.

Plugging these values into
Net Speedup = 1/((1-Fractionenhanced) + (Fractionenhanced/Speedupenhanced))
Gives

X Y
10 1.105
20 1.235
30 1.399

Speedup as a Result of Percent Vectorization

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40

Percent Vectorization

N
et

 S
p

ee
d

u
p

Series1

b) Using Amdahl’s Law the following equation can be used:

Speedupoverall = 1/((1 – Fractionenhanced) + (Fractionenhanced/Speedupenhanced) = 2

Rearranging this to solve for Fractionenhanced gives the equation:
Fractionenhanced = speedupoverall * speedupenhanced - speedupenhanced/ speedupoverall * speedupenhanced
– speedupoverall

So,
Fractionenhanced =(2 * 20 – 20)/(2 * 20 – 2) = .526

Therefore, the percentage vectorization needed to gain a speedup of 2 is 52.6%

c)
Since the maximum speedup attainable would be 20, one-half of this value would be a
Fractionenhanced = 10.
So,
Speedupoverall = 1/((1 – Fractionenhanced) + (Fractionenhanced/Speedupenhanced) = 10

Rearranging this to solve for Fractionenhanced gives the equation:
Fractionenhanced = speedupoverall * speedupenhanced - speedupenhanced/ speedupoverall * speedupenhanced –
speedupoverall

As above,
Fractionenhanced = (10 * 20 – 20)/(10 * 20 – 10) = .95

Therefore, the percentage vectorization needed to gain one-half of the maximum speedup
attainable is 95%.

d)
Using the hardware doubling the following equation can be generated:
Speedupoverall = 1/((1 – .7) + (.7/40)
Solving the above equation gives a Speedupoverall of 3.149

To find what percentage of vectorization would need to be achieved to match the hardware
doubling method simply solve for Fractionenhanced as follows:
Fractionenhanced = speedupoverall * speedupenhanced - speedupenhanced/ speedupoverall * speedupenhanced –
speedupoverall

 So,
 Fractionenhanced = (3.14 * 20 – 20)/(3.14 * 20 – 3.14) = .718

Therefore, a percentage vectorization of around 1% would match the hardware doubling
technique. I would recommend using the compiler to crew to gain the extra 1% vectorization.

1.2
a) Speedup = Timeoriginal/Timeenhanced

Since the speedup value is 10:
.5Timeenhanced =(Fractionenhanced * Timeorginal)/10

Solving for Percentageoriginal:
Fractionenhanced = 10 * Timeenhanced/2 * Timeoriginal (Equation 1)

Since 50% of enhanced execution time is spent is used on the enhancement, the following can also be
found:

.5Timeenhanced = (1 – Fractionenhanced) * Timeoriginal

 Plugging Fractionenhanced found in Equation 1 into the previous equation and solving for
Timeoriginal/Timeenhanced yields:

Speedupoverall = 5.5

b) To solve the speedup found in 1.2a must be used with the equation:

Speedupoverall = 1/((1 – Fractionenhanced) + (Fractionenhanced/Speedupenhanced)

Since the speedupoverall is 5.5 and the speedupenhanced = 10 there is only one variable left to solve. The
following equation can be used:
5.5 = 1/((1 – Fractionenhanced) + (Fractionenhanced/10)

Solving for Fractionenhanced the percentage can then be found.

Percentage of original execution time: 91%

1.6
Execution time is the primary concern so the following equation should be used when making the decision:
CPU Time = IC * CPI * Clock Cycle Time

Starting with the un-optimized version we know that CPI is 1 so:
CPU Timeun = IC * 1 * Clock Cycle Time (Equation 1)

We also know that the clock rate of the un-optimized machine is 5% higher than the optimized machine so:
(100% - 5%)Clock Cycle Timeop = Clock Cycle Timeun (Equation 2)

The optimized machine does not execute 1/3 of the load and store instructions that the un-optimized
machine does, and load and store instructions make up 30% of the total instructions so:
ICop = .9ICun (Equation 3)

Using the equations above as well as information stated in the exercise the following equation can be
constructed:

CPUop = .9ICun * 1 * 1.05 Clock Cycle Timeun

Now performance of the optimization can be compared with the un-optimized version by using the speedup
equation of:

Speedupoverall = (ICun * Clock Cycle Timeun)/(.9ICun * 1.05Clock Cycle Timeun)

Solving the previous equation gives a Speedupoverall of 1.06. Therefore, by using the optimization technique
a 6% increase in performance is realized.

1.7
a) MIPS = Clock Rate/(CPI * 106)

 MIPSsoftware = (16.67 * 106)/(6 * 106) = 2.8
 MIPScoprocessor = (16.67 * 106)/(10 * 106) = 1.7

b) Instruction Count = Execution Time * (MIPS * 106)

Instruction Countsoftware = 13.6 * (2.8 * 106) = 3.8 * 107

Instruction Countcoprocessor = 1.08 * (1.7 * 106) = 1.8 * 106

c) Using the coprocessor because each floating point operation definitely corresponds to one
instruction find the non floating point instructions:

NFP = (Instruction Countcoprocessor) - Total Instructions (From Exercise)
So,
NFP = (1.08 * 106) – 195, 578 = 1.6 * 106

Floating Point Instructions = Total Instructions – NFP
So,
FPI = (3.8 * 107) – (1.6 * 106) = 3.6 * 107

Instructions per floating point operation = Floating Point Instructions/ Floating Point Operations
So,
Instructions per floating point operation = 3.6 * 107/195,578 = 185

Therefore, on average, in software 185 integer instructions are required to perform a floating-point
operation.

d) MFLOPS = Number of floating point operations in program/(Execution Time * 106)
So,
MFLOPS = 195,578/(1.08 * 106) = 0.18

1.8
a) To find the number of good dies per wafer use:

Good Dies per Wafer = Dies per Wafer * Die Yield (Equation 1)
Where
Dies per Wafer = ((π *(Wafer Diameter/2)2) / Die area) - π * Wafer Diameter/(2 * Die Area)1/2
And
Die Yield = Wafer yield * (1 + (Defects per unit area * Die area)/α)-α

Using a 20 cm wafer, a defect density of 1 cm2, α of 3, and a wafer yield of 95% the following
table can be created by substituting these values into Equation 1 above.
Microprocessor Dies per Wafer Die Yield Good Chips
MIPS 4600 357 .48 171
PowerPC 603 321 .45 144
HP 71x0 128 .21 26
Digital 21064 A 154 .26 40
SuperSPARC/60 94 .15 14

b) Using the good chip total found in 1.8a the die cost would be found by dividing the wafer cost by
the total number of good dies per wafer. Doing this yields the die cost as illustrated below.

Microprocessor Good Chips Wafer Cost Die Cost
MIPS 4600 171 $3200 $18.7
PowerPC 603 144 $3400 $23.6
HP 71x0 26 $2800 $107.7
Digital 21064 A 40 $4000 $100
SuperSPARC/60 14 $4000 $285.7

 c)

To find the cost for each good, tested, and packaged good use the values found above in part a and
b.
Microprocessor Die Cost Testing Packaging Total Cost
MIPS 4600 $18.7 $1.7 $12 $32.4
PowerPC 603 $23.6 $2 $20 $45.6
HP 71x0 $107.7 $7.9 $70 $185.6
Digital 21064 A $100 $5.1 $50 $155.1
SuperSPARC/60 $285.7 $6 $30 $321.7

 Testing is calculated using:
 Testing Cost = (Hourly Cost/Time Unit)/Die Yield

d)
Solving this problem involves doing the same steps as in part a and b above. Instead of using a defect
density of 1 cm2, defect densities of .6 and 1.2 cm2 can be used. Then step c is repeated in the same
fashion using the new data.

Following these steps yields the following:
Defect Density
(cm2)

Packaging Die Cost Testing Cost Total Cost

.6 30 $157.6 $3.3 $190.9
1.2 30 $386.8 $8.1 $424.9

e)
Solving this problem involves following the steps laid out in parts a – c. Instead of using a defect density of
1 cm2 this problem uses a defect density of .8 cm2. The steps laid out in parts a – c should be repeated for
two α values of 3 and 4.5. Solving the steps laid out above with these new values yield the following:

α Packaging Die Cost Testing Cost Total Cost
3 $50 $80 $3.9 $133.9
4.5 $50 $83.8 $4.2 $138

