CDA 5106 Advanced ComputerArchitecture 4

EinallExam | Coulse Review

Chapter 1 Review! Topics

m Instruction Set Architecture

Bandwidth vs. Latency

MTTF Concept, calculating combined MTTF

Benchmarking

Amdahl’s Law, Speedup calculation

Processor Performance Equation, what is CPI

Instruction Set Architecture

“... the attributes of a [computing] system as seen by the programmer, i.e. the
conceptual structure and functional behavior, as distinct from the organization of the
data flows and controls the logic design, and the physical implementation.”

— Amdahl, Blaauw, and Brooks, 1964

Organization of Programmable Storage

Data Types & Data Structures: Encodings & Representations

Instruction Formats

Instruction (or Operation Code) Set

Modes of Addressing and Accessing Data Items and
Instructions

Exceptional Conditions

Tracking Tlechnoelogy Performance, lirends

m Compare Bandwidth vs. Latency improvements in
performance over time

m Bandwidth: number of events per unit time
m E.g., Mbits/sec over network, MB/sec from disk

m Latency: elapsed time for a single event

m E.g., one-way network delay in microseconds,
average disk access time in milliseconds

Calculating MTTE andi Reliability

If modules have exponentially distributed lifetimes (age of module does
not affect probability of failure), overall failure rate is the sum of failure
rates of the modules

m Calculate FIT and MTTF for 10 disks (1M hour MTTF per disk), 1 disk
controller (0.5M hour MTTF), and 1 power supply (0.2M hour MTTF):

FailureRate =10x(1/1,000,000) +1/500,000+1/200,000
=10+2+5/1,000,000
=17/1,000,000
=17,000FIT
MTTF=1,000,000,000/17,000
=~ 59,000hours

Vieasuring Performance

Benchmarking various components of a computer

®m Summarizing performance as a score

_ Performance,

Performance,

m Desktop Benchmarks
m FLOPS, MIPS, Graphics subsystem
m SPEC 2006

Server Benchmarks

®m Transactions, throughput
m TPC

Amdahl’s Law Example

m New CPU 10X faster

m |/O bound server, so 60% time waiting for 1/0

1

Speedup overall — FI'aCtiOn

enhanced

(1 — Fraction _, . .4)+
Speedup

enhanced

1 o
(1-04)+ 2% 0.64
10

=1.56

m Apparently, its human nature to be attracted by 10X faster,
vs. keeping in perspective its just 1.6X faster

Processor Performance Equation

CPUtime CPUClockCycles
ClockRate
CPl = CPUClﬁékCycles

CPUClockCycles = Z IC. xCPI,

i=1

Appendix A Review Topics

MIPS Integer Pipeline
~ m Pipeline Stages, what happens at each stage
m Data forwarding

m Pipeline hazards

m Data hazards

m Know basic MIPS instructions

m Branches, branch delay slot

m [nstruction Latency

Floating point pipeline

Structural hazard example

Instruction 1

Instruction 2 Mem Reg B Mem Reg

ALU

Instruction 3 Mem : Reg Mem 7 Reg

Instruction 4

DADD R1,R2,R3 | M

DSUB R4, R1, RS

AND R6, R1, R7

e meee—e—ne PROGFEIM @XECULION Order (in instructions)

Stalled pipeline

Data hazard examples

LD RI1,0(R2) 1F 1D EX MEM WB

DSUB R4,R1,R5 1IF 1D EX MEM WB

AND RG,RL,R7 I D EX MEM WD

Whl ke e i 5L AR T

LD RI1,0(R2) IF ID EX MEM WB

DSUB R4,R1,R5 1F D stall EX MEM WBR

AND R6,R1,R7 IF stall 1D EX MEM WB

OR R&,RL,R9 stall IF 1D EX MEM WB

Four Branch Hazard Alternatives

#4: Delayed Branch

m Define branch to take place AFTER a following instruction

branch instruction
sequential successor,
sequential successor,

i \ Branch delay of length n
sequential successor, /
branch target if taken

m 1 slot delay allows proper decision and branch target address in 5 stage
pipeline

m MIPS has one delay slot

Branch Delay Slot Scheduling

(a) From before

(b) From target (c) From fall-through

DADD R1, R2, R3 DADD R1, R2, R3
DSUB R4, R5, R6

if R2 = 0 then if A1 = 0 then
Delay slot DADD R1, R2, R3 Delay slot
if R1 = 0 then OR R7, R8, R9

Delay slot DSUB R4, R5, R6

becomes becomes becomes

DSUB R4, R5, R6

.-

DADD R1, R2, R3

if R2 = 0 then

DADD R1, R2, R3

if R1 =0 then

ORR?7, R8, R9

DADD R1, R2, R3

if R1 =0 then

DSUB R4, R5, R6

DSUB R4, R5, R6

FP Pipeline Stages

Functional Unit _|Latency |Initiation Interval | Latency = time between FU result being
Integer ALU 0 1 produced and when an instruction can use
Data Memory 1 1 it
FP Add 3 1
FP/Int Multipl 3 1 Latency determines number of stalls

il _u_ 1ply required if the next instruction needs result
FP/Int Divide/Sqrt 24 25 for this instruction’s EX stage

= e |nitiation Interval =
number of cycles
required between
issuing 2 of the
same type of
instruction

e Divider has an interval
> 1 since it is not
pipelined

FPrinfeger mutiply

FFtimeger divider

We pipeline the FP Adder and FP Multiply units to provide overlap in their execution, but not the FP
divider since divisions are fairly rare

Chapter 2 Review! Topics

Instruction-level parallelism

m Branch prediction

m Loop unrolling

m Converting MIPS to pseudo-code and vice versa
m Register renaming

m Dynamic Scheduling — what happens in Tomasulo’s, ROB, VLIW
vs. simple pipeline; instruction lifecycle

Unroll Loop Four Times
(straightforward way)

1 cycle stall .

1 Loop:L.D __FO0,0(R1) 4= _ 2c§dessfa“ Rewrite loop to
3 ADD.D F4, FO. F2 minimize stalls?
6 S.D O(R1),F4 ;drop DSUBUI & BNEZ
7 L.D F6,-8(R1)
9 ADD.D F8,F6,F2
12 S.D -8(R1) ,F8 ;drop DSUBUI & BNEZ
13 L.D F10,-16 (R1)
15 ADD.D F12,F10,F2
18 S.D -16 (R1) ,F12 ;drop DSUBUI & BNEZ
19 L.D F14,-24 (R1)
21 ADD.D F16,F14,F2
24 S.D —-24 (R1) ,F1l6
25 DADDUI R1,R1, #-32 ;alter to 4*8
27 BNEZ R1,LOOP

27 clock cycles, or 6.75 per iteration

(Assumes R1 is multiple of 4)

Unrolled Loop Scheduling That Minimizes Stalls

1 Loop:L.D FO0, 0 (R1)

2 L.D F6,-8(R1)

3 L.D F10,-16 (R1)

4 L.D F14,-24(R1)

5 ADD.D F4,F0,F2

6 ADD.D F8,F6,F2

7 ADD.D F12,F10,F2

8 ADD.D F16,F14,F2

9 S.D 0(R1),F4

10 S.D -8(R1),F8

11 S.D -16(R1),F12
12 DSUBUI R1,R1, #32

13 S.D 8(R1),F16 ; 8-32 = -24
14 BNEZ R1,LOOP

14 clock cycles, or 3.5 per iteration

Speculation to greater ILP.

m Greater ILP: Overcome control dependence by hardware
speculating on outcome of branches and executing
program as if guesses were correct

m Speculation = fetch, issue, and execute instructions as
if branch predictions were always correct

m Dynamic scheduling = only fetches and issues
instructions

m Essentially a data flow execution model: Operations
execute as soon as their operands are available

HW: Schemes: Instruction Parallelism

Key idea: Allow instructions behind stall to proceed
DIVD FO,F2,F4
ADDD F10,F0,F8
SUBD F12,F8,F14

m Enables out-of-order execution
and allows out-of-order completion

m Will distinguish when an instruction begins execution and when it
completes execution; between 2 times, the instruction is in execution

m In a dynamically scheduled pipeline, all instructions pass through issue
stage in order (in-order issue)

10

Tomasulo’s can overlap iterations of loops

m Register renaming

m Multiple iterations use different physical destinations for registers (dynamic
loop unrolling).
m Reservation stations
m Permit instruction issue to advance past integer control flow operations
m Also buffer old values of registers - totally avoiding the WAR stall that we saw

in the scoreboard.

m Other perspective: Tomasulo building data flow dependency graph on the
fly.

What about, Precise Interrupts?

Tomasulo had:
In-order issue, out-of-order execution, and out-of-order completion

Need to “fix” the out-of-order completion aspect so that we can find precise
breakpoint in instruction stream.

11

4 Steps of Speculative Tomasulo/ROB Algorithm

1. Issue—get instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue instr &
send operands & reorder buffer no. for destination (this stage
sometimes called “dispatch”)

2. Execution—operate on operands (EX)

When both operands ready then execute; if not ready, watch CDB
for result; when both in reservation station, execute; checks RAW

3. Write result—finish execution (WB)

Write on Common Data Bus to all awaiting FUs & reorder buffer;
mark reservation station available.

4. Commit—update register with reorder result

When instr. at head of reorder buffer & result present, update
register with result (or store to memory) and remove instr from
reorder buffer. Mispredicted branch flushes reorder buffer
(sometimes called “graduation”)

Loop Unrolling in VLI

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
L.D FO,0(R1) L.D F6,-8(R1) 1
L.D F10,-16(R1)) - 2
L.DF18,-32(R1) LDF22,-40(R1) ADD.D F4,FO,F2 ADD.D F8,F6,F2 3
L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4
ADD.D F20,F18,F2 ADD.D F24,F22,F2 5

S.D O(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 6
S.D-16(R1),F12 S.D-24(R1),F16 7
S.D-32(R1),F20 S.D-40(R1),F24 DSUBUI R1,R1,#48 8
S.D-0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays

7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)

Average: 2.5 ops per clock, 50% efficiency

Note: Need more registers in VLIW (15 vs. 6 in SS)

12

Chapter 4 Review! Topics

m Multiprocessors
~ m Cache coherence problem
m Cache coherence protocols — what do they do

m Cache states in the cache coherence lifecycle

2 Classes of Cache Coherence Protocols

Directory based — Sharing status of a block of physical
memory is kept in just one location, the directory

2. Snooping — Every cache with a copy of data also has a copy of
sharing status of block, but no centralized state is kept

« All caches are accessible via some broadcast medium (a bus
or switch)

» All cache controllers monitor or snoop on the medium to
determine whether or not they have a copy of a block that
is requested on a bus or switch access

13

Write-Back State Machine - CPU

CPU Read hit

State machine

for CPU requests CPU Read Shared
for each Invalid (read/only)
cache block Place read miss

m Non-resident blocks on bus
invalid

CPU Write

Place Write
Miss on bus

CPU Write
Place Write Miss on Bus

Cache Block
State

Exclusive
CPU read hit | (read/write)
CPU write hit CPU Write Miss (?)

Write back cache block

Place write miss on bus

Coherence Misses

True sharing misses arise from the communication of data
through the cache coherence mechanism

« Invalidates due to 1°t write to shared block
« Reads by another CPU of modified block in different cache
« Miss would still occur if block size were 1 word
2. False sharing misses when a block is invalidated because some

word in the block, other than the one being read, is written
into

« Invalidation does not cause a new value to be communicated, but only
causes an extra cache miss

« Block is shared, but no word in block is actually shared
= miss would not occur if block size were 1 word

14

Directory Protocol

m Similar to Snoopy Protocol: Three states
m Shared: > 1 processors have data, memory up-to-date
m Uncached: (no processor has it; not valid in any cache)
m Exclusive: 1 processor (owner) has data; memory out-of-date

m |n addition to cache state, must track which processors have

data when in the shared state (usually bit vector, 1 if processor
has copy)

m Keep it simple:
m Writes to non-exclusive data = write miss
m Processor blocks until access completes

m Assume messages received and acted upon in order sent

Appendix C Review! Topics

What makes caches work
= Principle of Locality

m Cache block placement schemes

m Cache page replacement policies

m Cache optimization techniques (also in Ch. 5)
m Memory access time with cache

m Multi-level caches

m Virtual Memory

TLB

15

Cache Basics

A is a (hardware managed) storage, intermediate in size,
speed, and cost-per-bit between the programmer-visible
registers and main physical memory

m The cache itself may be SRAM or fast DRAM
m There may be more than one level of caches
m Basis for cache to work:

® When a location is accessed, it and “nearby” locations are likely
to be accessed again soon
m “Temporal” locality - Same location likely again soon

m “Spatial” locality - Nearby locations likely

Block Placement Schemes

Fully associative: Direct mapped: Set associative:
. block 12 can go block 12 can go block 12 can go
4 anywhere only into block 4 anywhere in set 0
(12 mod 8) (12 mod 4)
Block 01234567 Block 01234567 Block 01234567
no. no. no.
Cache
Set Set Set Set
9 i1 72 8
Block frame address
Block 1111111111222222222233
no. 01234567890123456789012345678901
Memol

32

16

Replacement Strategies

m Which block do we replace when a new block comes in (on cache
miss)?

m Direct-mapped: There’s only one choice!

m Associative (fully- or set-):
m If any frame in the set is empty, pick one of those.
m Otherwise, there are many possible strategies:
m Random: Simple, fast, and fairly effective

m Least-Recently Used (LRU), and approximations thereof

m Require bits to record replacement info., e.g. 4-way requires 4! = 24
permutations, need 5 bits to define the MRU to LRU positions

m FIFO: Replace the oldest block.

Basic Cache Performance Formulas

Misses perinstruction

Miss Rate = : .
Memory accesses per instruction

= Memory access - data transfer requests (on load/store) and
instruction memory access (always 1 per instruction)

Average memory accesstime = Hit time + Miss rate X Miss penalty

= Units of measurement:
= Hit time, Miss penalty — ns or clock cycles
= Miss rate — unitless

= Average memory access time — ns or clock cycles

17

Cache Performance Improvement

Average memory access time = (Hit time) + (Miss rate)x(Miss penalty

— 7
~—

m Reduce miss penalty: “Amortized miss penalty”

m Multilevel cache; Critical word first and early restart; priority to read miss;
Merging write buffer; Victim cache

m Reduce miss rate:

m Larger block size; Increase cache size; Higher associativity; Way prediction
and Pseudo-associative caches; Compiler optimizations

m Reduce miss penalty/rate via parallelism:

m Non-blocking cache; Hardware and Compiler-controlled prefetching

m Reduce hit time:

m Small simple cache; Avoid address translation in indexing cache; Pipelined
cache access; Trace caches

6 Basic Cache Optimizations

Reducing Hit Time
1. Avoiding Address Translation during Cache Indexing

m Reducing Miss Penalty

2. Multilevel Caches

3. Giving Reads Priority over Writes

» E.g., Read complete before earlier writes in write buffer

m Reducing Miss Rate

4. Llarger Block size (Compulsory misses)
5. Larger Cache size (Capacity misses)
6. Higher Associativity (Conflict misses)

18

Tiranslation Lookaside Buffer

Virtual Address

i Page #‘ Offset | g el
i

Translation

Page Table

Chapter 5 Review! Topics

m Cache optimization techniques
- m Virtual Machine concepts
a VMM

19

11 Advancedi Cache Optimizations

Reducing hit time m Reducing Miss Penalty
1. Small and simple caches 7. Critical word first

2. Way prediction 8. Merging write buffers

3. Trace caches
m Reducing Miss Rate

m Increasing cache bandwidth 9 Compiler optimizations

4. Pipelined caches m Reducing miss penalty or
5. Multibanked caches miss rate via parallelism
6. Nonblocking caches 10. Hardware prefetching

11. Compiler prefetching

Virtual Machine Monitors (VIMIVIs)

Virtual machine monitor (VMM) or hypervisor is software that
supports VMs

. m VMM determines how to map virtual resources to physical
resources

m Physical resource may be time-shared, partitioned, or emulated
in software

m VMM is much smaller than a traditional OS;

m isolation portion of a VMM is = 10,000 lines of code

20

Impact of VVIMs on VirtuallMemory.

m Virtualization of virtual memory if each guest OS in every VM
manages its own set of page tables?

m VMM separates real and physical memory

m Makes real memory a separate, intermediate level between virtual
memory and physical memory

m Some use the terms virtual memory, physical memory, and machine
memory to name the 3 levels

m Guest OS maps virtual memory to real memory via its page tables, and
VMM page tables map real memory to physical memory

® VMM maintains a shadow page table that maps directly from the
guest virtual address space to the physical address space of HW
m Rather than pay extra level of indirection on every memory access

m VMM must trap any attempt by guest OS to change its page table or to
access the page table pointer

Chapter 6 Review! Topics

~ m RAID schemes
’ ® Queuing Theory

m Little’s Law

21

Summary: RAID Technigues

- Disk Mirroring, Shadowing (RAID 1)

Each disk is fully duplicated onto its "shadow"
Logical write = two physical writes
100% capacity overhead

e Parity Data Bandwidth Array (RAID 3)
Parity computed horizontally
Logically a single high data bw disk

» High I/O Rate Parity Array (RAID 5)
Interleaved parity blocks

80 () -+
Jez=e

Independent reads and writes

Logical write = 2 reads + 2 writes

Introduction to Queuing Theory.

Arrivals Departures
_ _

m More interested in long term, steady state than in startup =>
Arrivals = Departures

m Little’s Law:
Mean number tasks in system = arrival rate x mean response
time
m Observed by many, Little was first to prove

m Applies to any system in equilibrium, as long as black box not
creating or destroying tasks

22

Time in Queue

All tasks in queue (Length,,.) ahead of new task must be
completed before task can be serviced

m Each task takes on average Time

server

m Task at server takes average residual service time to complete

m Chance server is busy is server utilization
= expected time for service is Server utilization X Average
residual service time

m Time = Length x Time

queue queue server
+ Server utilization x Average residual service time

m Substituting definitions for Length Average residual service

time, & rearranging:

queue,

Timeg,e e = TiMeg,, X Server utilization/(1-Server utilization)

Example

m Little’s Law: The average number of customers in a stable system (over some
time interval) is equal to their average arrival rate, multiplied by their average
time in the system.

m Q: At the supermarket a checkout operator has on average 4 customers and
customers arrive every 2 minutes. What is the average time spent by a
customer in a waiting line?

Average Response Time Average number of Arrival Rate
customers in a system

? minutes/customer 4 customers % customer/minute

m A: Customers on average will be in line for 8 minutes.

23

