CDA 5106 Advanced ComputerArchitecture 4

Module'5 | Multiprecessors

Review
m MP Motivation

m SISD v. SIMD v. MIMD

m Centralized vs. Distributed Memory

m Challenges to Parallel Programming

m Consistency, Coherency, Write Serialization
m Write Invalidate Protocol

m Example

Conclusion

Uhiprocessor Performance (SPECint)

From Hennessy and Patterson,
Computer Architecture: A Quantitative

Approach, 4th edition, 2006
s 1000RMEEEEEES —— - - - - - - - - —— b B LRl — - A
£
% 52%/year
:
] 00
3
5
13
2
jo)
& 10 A
25%/year
1 — T T T T

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
e VAX : 25%/year 1978 to 1986
* RISC + x86: 52%/year 1986 to 2002

Dejaivu allfover again?:

... today’s processors ... are nearing an impasse as technologies approach the speed
of light..” David Mitchell, The Transputer: The Time Is Now (1989)

m Transputer had bad timing (Uniprocessor performanceT)

= Procrastination rewarded: 2X seq. perf. / 1.5 years

“We are dedicating all of our future product development to multicore designs. ...
This is a sea change in computing” Paul Otellini, President, Intel (2005)

= All microprocessor companies switch to MP (2X CPUs / 2 yrs)
=> Procrastination penalized: 2X sequential perf. / 5 yrs

Manufacturer/Year AMD/’05 Intel/’06 IBM/’04 Sun/’05
Processors/chip 2 2 2 8
Threads/Processor 1 2 2 4
Threads/chip

Other Factors = Multiprocessors

Growth in data-intensive applications

m Data bases, file servers, ...
m Growing interest in servers, server performance.
m Increasing desktop performance less important
m Outside of graphics

m Improved understanding in how to use multiprocessors
effectively

m Especially server where significant natural TLP

m Advantage of leveraging design investment by replication

m Rather than unique design

Flynn’s Taxonomy

m Flynn classified by data and control streams in 1966

Single Instruction Single Data Single Instruction Multiple Data
(SISD) SIMD
(Uniprocessor) (single PC: Vector, CM-2)

Multiple Instruction Single Data | Multiple Instruction Multiple

(MISD) Data MIMD
(???7?) (Clusters, SMP servers)
m SIMD = Data Level Parallelism Pros. of the IEEE, v 54- 1900-1809, Deo. 1966,

m MIMD = Thread Level Parallelism

m MIMD popular because

m Flexible: N pgms and 1 multithreaded pgm
m Cost-effective: same MPU in desktop & MIMD

Back to Basics

“A parallel computer is a collection of processing elements
that cooperate and communicate to solve large problems
fast.”

m Parallel Architecture = Computer Architecture +
Communication Architecture

m 2 classes of multiprocessors WRT memory:
1. Centralized Memory Multiprocessor
« < few dozen processor chips (and < 100 cores) in 2006
» Small enough to share single, centralized memory
2. Physically Distributed-Memory multiprocessor
o Larger number chips and cores than 1.

« BW demands = Memory distributed among processors

Centralized vs. Distributed Memory

> 0o

Interonnection network

| 1

Centralized Memory

’ Interonnection network

Distributed Memory

Centralized Mlemory Multiprocessor

Also called symmetric multiprocessors (SMPs) because single
main memory has a symmetric relationship to all processors

m Large caches = single memory can satisfy memory demands
of small number of processors

m Can scale to a few dozen processors by using a switch and by
using many memory banks

m Although scaling beyond that is technically conceivable, it
becomes less attractive as the number of processors sharing
centralized memory increases

Distributed Memory Multiprecessor

Pro: Cost-effective way to scale memory bandwidth

m |f most accesses are to local memory
m Pro: Reduces latency of local memory accesses

m Con: Communicating data between processors more
complex

m Con: Must change software to take advantage of
increased memory BW

2. Models for Communication and Memory: Architecture

Communication occurs by explicitly passing messages
among the processors:
message-passing multiprocessors

2. Communication occurs through a shared address space (via
loads and stores):
shared memory multiprocessors either

= UMA (Uniform Memory Access time) for shared address, centralized
memory MP

= NUMA (Non Uniform Memory Access time multiprocessor) for
shared address, distributed memory MP

m In past, confusion whether “sharing” means sharing physical
memory (Symmetric MP) or sharing address space

Challenges ofi Parallel Processing

m First challenge is % of program inherently sequential

m Suppose 80X speedup from 100 processors. What
fraction of original program can be sequential?

a. 10%
b. 5%
c. 1%
d. <1%

Challenges ofi Parallel Processing

Second challenge is long latency to remote memory

m Suppose 32 CPU MP, 2GHz, 200 ns remote memory, all
local accesses hit memory hierarchy and base CPl is 0.5.
(Remote access = 200ns * 2GHz = 400 clock cycles.)

m What is performance impact if 0.2% instructions involve
remote access?

a. 1.8X
b. 2.0X
c. 2.5X
d. 1.3X

CPIFEquation

m CPI =Base CPl + Remote request rate x Remote request cost
m CPI=0.5+0.2%x400=0.5+0.8=1.3

m No communication is 1.3/0.5 or 2.6 faster than 0.2%
instructions involve local access

Symmetric Shared-Memory Architectures

m From multiple boards on a shared bus to multiple processors
inside a single chip

m Caches both
m Private data are used by a single processor
m Shared data are used by multiple processors

m Caching shared data
= reduces latency to shared data, memory bandwidth for
shared data, and interconnect bandwidth

= cache coherence problem

Example Cache Coherence Problem

1/O devices
us— | @

Memory

m Processors see different values for u after event 3
m With write back caches, value written back to memory depends on
happenstance of which cache flushes or writes back value when
m Processes accessing main memory may see very stale value

m Unacceptable for programming, and its frequent!

Example

P>

/*Assume initial value of A and flag is 0%/
A= 1; while (flag == 0); /*spinidly*/
flag = 1; print A;

m Intuition not guaranteed by coherence

m expect memory to respect order between accesses to
different locations issued by a given process

m to preserve orders among accesses to same
location by different processes e

m Coherence is not enough!

] rtains onl ingle | ion Conceptual
pertains only to single locatio oo Mem

Intuitive Memory Viodel

m Reading an address should
return the last value
written to that address

m Easy in uniprocessors,
except for I/0

Memory _:.:"':

N

m Too vague and simplistic; 2 issues:
1. Coherence defines values returned by a read
2. Consistency determines when a written value will be returned by a read

m Coherence defines behavior to same location, Consistency
defines behavior to other locations

Defining Coherent Memory: System

Preserve Program Order: A read by processor P to location X that follows a
write by P to X, with no writes of X by another processor occurring
between the write and the read by P, always returns the value written by P

2. Coherent view of memory: Read by a processor to location X that follows a
write by another processor to X returns the written value if the read and
write are sufficiently separated in time and no other writes to X occur
between the two accesses

3. Write serialization: 2 writes to same location by any 2 processors are seen
in the same order by all processors

m If not, a processor could keep value 1 since saw as last write

m For example, if the values 1 and then 2 are written to a location,
processors can never read the value of the location as 2 and then later
readitas 1

Write Consistency.

m For now assume:

1. A write does not complete (and allow the next write to occur)
until all processors have seen the effect of that write

2. The processor does not change the order of any write with
respect to any other memory access

= if a processor writes location A followed by location B, any
processor that sees the new value of B must also see the
new value of A

m These restrictions allow the processor to reorder reads,
but forces the processor to finish writes in program order

10

Basic Schemes for Enforcing Coherence

Program on multiple processors will normally have copies of the
same data in several caches

m Unlike I/O, where its rare
m Rather than trying to avoid sharing in SW, SMPs use a HW
protocol to maintain coherent caches
m Migration and Replication key to performance of shared data
m Migration - data can be moved to a local cache and used there in
a transparent fashion

m Reduces both latency to access shared data that is allocated remotely and
bandwidth demand on the shared memory

m Replication —for shared data being simultaneously read, since
caches make a copy of data in local cache

m Reduces both latency of access and contention for read shared data

2 Classes of Cache Coherence Protocols

Directory based — Sharing status of a block of physical
memory is kept in just one location, the directory

2. Snooping — Every cache with a copy of data also has a copy of
sharing status of block, but no centralized state is kept

« All caches are accessible via some broadcast medium (a bus
or switch)

» All cache controllers monitor or snoop on the medium to
determine whether or not they have a copy of a block that
is requested on a bus or switch access

11

Snoopy. Cache-Coherence Protocols

Bus snoop

I/O devices

Cache-memory
transaction

m Cache Controller “snoops” all transactions on the shared
medium (bus or switch)

m relevant transaction if for a block it contains

m take action to ensure coherence
m invalidate, update, or supply value
m depends on state of the block and the protocol

m Either get exclusive access before write via write invalidate or
update all copies on write

Example: Write-thru Invalidate

I/O devices

O\ jer 7 ®

Memory

m Must invalidate before step 3

m Write update uses more broadcast medium BW
= all recent MPUs use write invalidate

12

Architectural Building Blocks

Cache block state transition diagram
m FSM specifying how disposition of block changes
m invalid, valid, dirty
Broadcast Medium Transactions (e.g., bus)
m Fundamental system design abstraction
m Logically single set of wires connect several devices

m Protocol: arbitration, command/addr, data

= Every device observes every transaction
Broadcast medium enforces serialization of read or write accesses
= Write serialization

m 1% processor to get medium invalidates others copies

m Implies cannot complete write until it obtains bus

m All coherence schemes require serializing accesses to same cache block

Also need to find up-to-date copy of cache block

Locate up-to-date copy of data

Write-through: get up-to-date copy from memory

m Write through simpler if enough memory BW

m Write-back harder

m Most recent copy can be in a cache

m Can use same snooping mechanism
1. Snoop every address placed on the bus

2. If a processor has dirty copy of requested cache block, it provides it in
response to a read request and aborts the memory access

m Complexity from retrieving cache block from a processor cache, which
can take longer than retrieving it from memory

m Write-back needs lower memory bandwidth
= Support larger numbers of faster processors
= Most multiprocessors use write-back

13

Cache Resources for WB Snoeoping

m Normal cache tags can be used for snooping
. m Valid bit per block makes invalidation easy
m Read misses easy since rely on snooping

m Writes = Need to know if know whether any other copies of
the block are cached

m No other copies = No need to place write on bus for WB

m Other copies = Need to place invalidate on bus

Cache Resources for WB Snooping

m To track whether a cache block is shared, add extra state bit
associated with each cache block, like valid bit and dirty bit

m Write to Shared block = Need to place invalidate on bus
and mark cache block as private (if an option)

m No further invalidations will be sent for that block

m This processor called owner of cache block

m Owner then changes state from shared to unshared (or
exclusive)

14

Cache behavior in response to bus

m Every bus transaction must check the cache-address tags
m could potentially interfere with processor cache accesses

m A way to reduce interference is to duplicate tags
m One set for caches access, one set for bus accesses

m Another way to reduce interference is to use L2 tags

m Since L2 less heavily used than L1

= Every entry in L1 cache must be present in the L2 cache, called the
inclusion property

m If Snoop gets a hit in L2 cache, then it must arbitrate for the L1 cache
to update the state and possibly retrieve the data, which usually
requires a stall of the processor

Example Protocol

m Snooping coherence protocol is usually implemented by
incorporating a finite-state controller in each node

m Logically, think of a separate controller associated with each
cache block

m That is, snooping operations or cache requests for different blocks can
proceed independently

m In implementations, a single controller allows multiple
operations to distinct blocks to proceed in interleaved fashion

m that is, one operation may be initiated before another is completed,
even through only one cache access or one bus access is allowed at time

15

Wirite-throughi Invalidate Protocol

PrRd/ --

m 2 states per block in each cache
PrWr / BusWr

m as in uniprocessor

m state of a block is a p-vector of states 5, BusWr/-

m Hardware state bits associated with blocks i
that are in the cache PrRd / Bu
m other blocks can be seen as being in invalid

(not-present) state in that cache PrWr / BusWr

m Writes invalidate all other cache copies
m can have multiple simultaneous readers of

block, but write invalidates them

PrRd: Processor Read
PrWr: Processor Write
BusRd: Bus Read
BusWr: Bus Write

1/0 devices

Is 2-state Protocol Coherent?

Processor only observes state of memory system by issuing memory operations

m Assume bus transactions and memory operations are atomic and a one-level
cache

m all phases of one bus transaction complete before next one starts
m processor waits for memory operation to complete before issuing next
m with one-level cache, assume invalidations applied during bus transaction
m All writes go to bus + atomicity
m Writes serialized by order in which they appear on bus (bus order)
=>invalidations applied to caches in bus order
m How to insert reads in this order?

® Important since processors see writes through reads, so determines whether write
serialization is satisfied

m But read hits may happen independently and do not appear on bus or enter directly
in bus order

Let’s understand other ordering issues

16

Ordering

Py: —>®—>®—> (W) ®—
P: —=®—>® @/ ®
pz;—>®—>®——> ®—>®—> >

m Writes establish a partial order

=

Doesn’t constrain ordering of reads, though
shared-medium (bus) will order read misses too

- any order among reads between writes is fine,
as long as in program order

Example Write Back Snoopy: Protocol

m [Invalidation protocol, write-back cache
® Snoops every address on bus

m [f it has a dirty copy of requested block, provides that block in response to the read
request and aborts the memory access

m Each memory block is in one state:
m Clean in all caches and up-to-date in memory (Shared)
m OR Dirty in exactly one cache (Exclusive)
® OR Not in any caches
m Each cache block is in one state (track these):
m Shared : block can be read
m OR Exclusive : cache has only copy, its writeable, and dirty
® OR Invalid : block contains no data (in uniprocessor cache too)

m Read misses: cause all caches to snoop bus

Writes to clean blocks are treated as misses

17

Write-Back State Machine - CPU

CPU Read hit

State machine

]tor CPUhrequests CPU Read Shared
or eac Invalid |
cache block Place read miss G
m Non-resident blocks on bus

invalid

CPU Write

Place Write
Miss on bus

CPU Write

Cache Block Place Write Miss on Bus
State Exclusive

CPU read hit | (read/write)

CPU write hit CPU Write Miss (?)

Write back cache block
Place write miss on bus

Wirite-Back State Machine- Bus reguest

Write miss
for this block

Shared
(read/only)

m State machine
for bus requests
for each cache block

Invalid

Write miss

for this block

(coherence)

Write Back Read miss
Block; (abort for this block

memory access) Write Back

Block; (abort

Exclusive memory access)

(read/write)

18

Block-replacement

State machine Invalid

CPU Read hit

CPU Read Shared

for CPU requests
for each
cache block

CPU Write

Place Write
Miss on bus

Cache Block
State

Exclusive

CPU read hit \ (read/write)
CPU write hit

(read/only)

Place read miss
on bus

CPU Read miss
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Write Miss
Write back cache block
Place write miss on bus

Write-back State Machine-Ill

State machine

for this block '

‘ for CPU requests Shared
for each Invalid PU Reag
read/onl
cache block and Place read miss ()
for bus requests - CPU Write ©Onbus
for each Place Write

cache block

for this block

Block; (abort on bus
memory access)

Cache Block

State ' Exclusive

.\ (read/write)
CPU read hit ’ CPU Write Miss

CPU write hit

Miss on bus

CPU read miss
Write back blogK,
Write Back Place read mis

__ CPURead hit

CPU Read miss
Place read miss
on bus

CPU Write
Place Write Miss on Bus

Read miss Write Back
for this block Block; (abort
memory access)

Write back cache block
Place write miss on bus

39

19

Example

[l P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value|

P1 Write 10 to A1

P1: Read A1 |
P2: Read A1

| P2: Write 20 to A1

P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
initial cache state is invalid

Example

hi
S
(21 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1 Write 10 to A1l | Excl. Al 10 WrMs P Al
P1:Read A1 |
P2: Read A1]

| P2: Write 20 to A1

P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

20

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value]
P1 Write 10 to A1 Excl. Al 10 WrMs P1 Al
P1: Read A1 | Excl. Al 10
P2: Read A1

| P2: Write 20 to A1

P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

Example

n
|
(il P2 Bus Memory
step State |Addr | Value State Addr Value Action | Proc. Addr | Value Addr Value
P1 Write 10 to A1 Excl. Al 10 WrMs P1 Al
Pi:Read A1 | Exc. Al 10
P2: Read A1 Shar. A1 RdMs = P2 Al

Shar. Al 10 i WrBk P1 Al 10 Al 10
Shar. Al 10 RdDa 2 Al 10 Al 10
P2: Write 20 to A1

P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value|
P1 Write 10 to A1 Excl. Al 10 WrMs P1 Al
P1: Read A1 | Excl. Al 10
P2: Read A1 Shar. A1l RdMs P2 Al

Shar. Al 10 WrBk P1 Al 10 | A1 | 10
Shar. Al 10 [RdDa P2 A1l 10 [A1] 10
P2: Write 20 to A1 Inv. Excl. Al 20 |WrMs P2 A1l Al | 10

P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

Example

n
S
(i Pz Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1 Write 10 to A1 Excl. Al 10 WrMs P1 Al
P1: Read Al | Excl. Al 10
P2: Read A1 Shar. Al RdMs P2 Al
Shar. Al 10 WrBk P1 Al 10 Al 10
Shar. Al 10 | RdDa 2 Al 10 Al 10
P2: Write 20 to A1 Inv. Excl. Al 20 | WrMs P2 Al Al 10
P2: Write 40 to A2 WrMs P2 A2 Al 10

Excl. A2 40 WrBk P2 Al 20 Al | 20

Assumes A1 and A2 map to same cache block,
but A1 1= A2

22

And in Conclusion...

“End” of uniprocessors speedup => Multiprocessors

m Parallelism challenges: % parallelizable, long latency to remote
memory

m Centralized vs. distributed memory

m Small MP vs. lower latency, larger BW for Larger MP
m Message Passing vs. Shared Address

m Uniform access time vs. Non-uniform access time

m Snooping cache over shared medium for smaller MP by
invalidating other cached copies on write

m Sharing cached data = Coherence (values returned by a read),
Consistency (when a written value will be returned by a read)

Shared medium serializes writes = Write consistency

Infosessions

m MISD machines
m Theory (can we say Vector processors are MISD?)
m Examples of problems applying to MISD class
m Contrast with MIMD for the same problems

m (For Tuesday)

23

Programmer’s Perspective

Properly-designed multithreaded application should run with no
recompilation on one or multiple cores

. m Differences exist between OS process and thread scheduling
(e.g., Linux vs Windows)

m Multiple threads of one process may run on different processors

m Not all applications benefit from using multiple processors (e.g.,
from this lecture, each thread may keep shared data in an
individual processor cache, using more resources to maintain
cache coherence among multiple processors)

m Should we allocate all threads to run on the same CPU?
Probably not.

CPU tries to retain thread affinity to minimize adverse effects

Programmer’s Perspective — Threading Caveats

Example: Recursive Algorithm
m Makes heavy use of local variables
m On a hyper-threaded CPU, virtual cores share cache

m Thread stack lives in the same offset within the cache for
multiple threads

m BUT: local variables to each thread will result in a lot of cache
replacement events

Result: threads are trashing each other’s cached data.

24

Programmer’s Perspective — Threading Caveats

Multithreading for architectural simplification is sometimes
performed

= Optimally: as many threads as CPU cores

m Even on asingle-threaded system, multi-threading may improve
performance (e.g., I/O components)

m Too many threads: too much thread-switching (however, for
CPU-bound threads it’s not that big of a problem)

m Multi-threading may take time to get used to (counter-intuitive
results or behavior is sometimes observed by novice
programmers)

Programmer’s Perspective

m References:
http://www.personal.kent.edu/~rmuhamma/OpSystems/Myos/
threads.htm

m Wikipedia
m MSDN Online (Parallel FX library)

25

