CDA 5106 Advanced ComputerArchitecture 4

Module 8 | Storage Systems

Magnetic Disks
= RAID

m Advanced Dependability/Reliability/Availability
m |/O Benchmarks, Performance and Dependability
m Intro to Queueing Theory

Conclusion

Motivation: Who Cares About |/O?

m CPU Performance: 60% per year
| m

m Amdahl's Law: system speed-up limited by the slowest part!
10% 10 & 10x CPU => 5x Performance
10% 10 & 100x CPU => 10x Performance

m /O bottleneck:

|/O1 Systems

interrupts

Processor

Cache

Main /0 /0 /0
Memory Controller | [Controller | | Controller

Magnetic Disks

m Purpose:
m Long-term, nonvolatile storage Sector

m Llarge, inexpensive, slow level in the
storage hierarchy

m Characteristics: Cylinder

m Seek Time (~8 ms avg) Head ~— Platter
m Transfer rate
7200 RPM = 120 RPS => 8 ms per rev
® Abouta sector per ms avg rot. latency = 4 ms

(5-15 MB/s) 128 sectors per track, 0.25 ms transfer per sector
1 KB per sector => 16 MB / s

m Blocks
m Capacity Response time
. = Queue + Controller + Seek + Rot + Xfer
m Gigabytes \/
m Quadruples every 3 years Service time

(aerodynamics)

Disk Device Terminology

Sector
Innet Track / He ad

Gty Track % _!j

= ————————

P ——

e

—

4

R Achianok

Flarter

Disk Latency = Queuing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

Order of magnitude times for 4K byte transfers:
Seek: 8 ms or less

Rotate: 4.2 ms @ 7200 rpm
Xfer: 1 ms @ 7200 rpm

Historicall Perspective

m 1956 IBM Ramac — early 1970s Winchester
m For mainframe computers, proprietary interfaces
m Steady shrink in form factor: 27 in. to 14 in. ’ i
m Form factor and capacity drives market more than performance

m 1970s developments
m 5.25 inch floppy disk form factor (microcode into mainframe)
m Emergence of industry standard disk interfaces

m Early 1980s: PCs and first generation workstations

m Mid 1980s: Client/server computing
m Centralized storage on file server
m accelerates disk downsizing: 8 inch to 5.25
m Mass market disk drives become a reality
m industry standards: SCSI, IPI, IDE
m 5.25 inch to 3.5 inch drives for PCs, End of proprietary interfaces

1900s: Laptops => 2.5 inch drives
2000s: What new devices leading to new drives?

Disk Figure of Merit: Areall Density

m Bits recorded along a track: Metric is Bits Per Inch (BPI)

m Number of tracks per surface: Metric is Tracks Per Inch (TPI)
m Disk Designs Brag about bit density per unit area
m Metricis Bits Per Square Inch: Areal Density = BPI x TPI

Year Areal Density 1,000,000
1973 2
1979 8 100,000 -
1989 63
1997 3,090 %101000 7
2000 17,100 2 |
2006 130,000 a 1,000

3 100 -

< 10 -

1 ‘

1970 1980 1990 2000 2010

Year m

|/O Benchmarks

m For better or worse, benchmarks shape a field

m Processor benchmarks classically aimed at response time for a fixed-sized
problem

m 1/0 benchmarks typically measure throughput, possibly with upper limit on
response times (or 90% of response times)

m Transaction Processing (TP) (or On-line TP=OLTP)

m If bank computer fails when customer withdraw money, TP system
guarantees account debited if customer gets S & account unchanged if no $

m Airline reservation systems & banks use TP
m Atomic transactions make this work

m Classic metric is Transactions Per Second (TPS)

|/O Benchmarks: Transaction Processing

Early 1980s great interest in OLTP

m Expecting demand for high TPS (e.g., ATM machines, credit cards)
m Tandem’s success implied medium range OLTP expands

m Each vendor picked own conditions for TPS claims, report only CPU times with
widely different 1/0

m Conflicting claims led to disbelief of all benchmarks = chaos

m 1984 Jim Gray (Tandem) distributed paper to Tandem + 19 other
companies proposing standard benchmark

m Published “A measure of transaction processing power,” Datamation, 1985
by Anonymous et. al

m To indicate that this was effort of large group
m To avoid delays of legal department of each author’s firm
m Still get mail at Tandem to author “Anonymous”

Led to Transaction Processing Council in 1988: www.tpc.org

(40%/yr)

m Time to read whole disk
Year Sequentially

1990 4 minutes
2000 12 minutes
2006 56 minutes
2006 171 minutes

Use Arrays of Small Disks?

between disks and CPUs?

Future Disk Size andl Performance

m Continued advance in capacity (60%/yr) and bandwidth

Katz and Patterson asked in 1987:
- Can smaller disks be used to close gap in performance

m Slow improvement in seek, rotation (8%/yr)

Randomly
(1 sector/seek)

6 hours

1 week(!)

3 weeks (SCSI)
7 weeks (SATA)

1

1 disk design

3.5" = = @

Conventional:
4 disk = L
designs 3.5” 525”7 10” T
‘ Low End »High End [
Disk Array:

Advantages of Small Form Eactor Disk Drives

86 B8 a0

0o

0

Low cost/MB
High MB/volume s
High MB/watt '
Low cost/Actuator MITE T | o | sev | i ||
ME | 7500F|1320F| 1000 | 765 | om0
MElwalt | 454 20 588 20,13 200

MEBtcuft| 313 pikiti}

Cost and Environmental Efficiencies

Replace Small Number of Large Disks with Large
Number oft Smalll Disks! (1988 Disks)

IBM 3390K IBM 3.5" 0061 x70

Capacity 20 GBytes 320 MBytes 23 GBytes
Volume 97 cu. ft. 0.1 cu. ft. e ft. o
Power 3 KW 11w 1 KW

Data Rate 15 MB/s 1.5 MB/s 120 MB/s

/O Rate 600 1/Os/s 551/0s/s 3900 10s/s X
MTTF 250 KHrs 50 KHrs ???Hrs 6X
Cost $250K $2K $150K

Disk Arrays have potential for large data and 1/0 rates, high MB
per cu. ft., high MB per KW, but what about reliability?

Array Reliability

e Reliability of N disks = Reliability of 1 Disk + N

50,000 Hours + 70 disks = 700 hours

Disk system MTTF: Drops from 6 years to 1 month!

e Arrays (without redundancy) too unreliable to be useful!

Hot spares support reconstruction in parallel with access: very
high media availability can be achieved

Redundant Arrays of (Inexpensive) Disks

m Files are "striped" across multiple disks
m Redundancy yields high data availability

m Availability: service still provided to user, even if
some components failed
m Disks will still fail

m Contents reconstructed from data redundantly stored in
the array

= Capacity penalty to store redundant info

= Bandwidth penalty to update redundant info

Redundant Arrays of Inexpensive Disks
RAID 1: Disk Mirroring/Shadowing

recovery
S8 =88
O O O

® Each disk is fully duplicated onto its “mirror”
Very high availability can be achieved

e Bandwidth sacrifice on write: Logical write = two physical writes
e Reads may be optimized

* Most expensive solution: 100% capacity overhead

« (RAID 2 not interesting, so skip)

RAIDI 3: Parity: Disk

10010011 N—rt
11001101
10010011
/ \
1

logical record 1 /
Striped physical [(1) \\(11
records 0

P contains sum of 0
other disks per stripe

mod 2 (“parity”) 0
If disk fails, subtract 1
P from sum of other 1
disks to find missing information

P RPOOO|IRIO K
R ORROIO|R =

= O

Sum computed across recovery group to protect against hard
disk failures, stored in P disk

m Logically, a single high capacity, high transfer rate disk: good
for large transfers

m Wider arrays reduce capacity costs, but decreases availability

33% capacity cost for parity if 3 data disks and 1 parity disk

Inspiration for RAIDI5

m RAID 4 works well for small reads

m Small writes (write to one disk):
m Option 1: read other data disks, create new sum and write to
Parity Disk
m Option 2: since P has old sum, compare old data to new data,
add the difference to P
m Small writes are limited by Parity Disk: Write to DO, D5 both also

write to P disk S

oo [o1]||[2

o]]| [[=
—

N’

RAIDI5: Highil/@ Rate Interleaved! Parity

writes
possible
because of
interleaved

parity

Example:
write to
DO, D5
uses disks
0,1,3,4

Independent%

DO D1 D2 D3| | P
oe] [os] [os] [F] [or
ps | | D9 ;%;é p1o| |[p11
D12 p13| [p14| |pD1s5
p16| [D17| |[pD18| |D19
p20| |p21| [p22| |pD23 ﬁﬁié

‘K : : Dwkbmumné

Problems ofi Disk Arrays: Small Writes

RAID-5: Small Write Algorithm
1 Logical Write = 2 Physical Reads + 2 Physical Writes

DO’

new
data

po| |p1| |p2| [D3| | P
old old
data (1- Read) parity

XOR

XOR
(3. Write) (4. Write)

(2. Read)

Increasing
Logical
Disk
Addresses

11

RAID 6: Recovering from 2 failures

m Why > 1 failure recovery?
m operator accidentally replaces the wrong disk during a failure

m since disk bandwidth is growing more slowly than disk capacity, the MTT
Repair a disk in a RAID system is increasing
=increases the chances of a 2nd failure during repair since takes longer

m reading much more data during reconstruction meant increasing the
chance of an uncorrectable media failure, which would result in data loss.

RAID 6: Recovering from 2 failures

Network Appliance’s row-diagonal parity or RAID-DP

m Like the standard RAID schemes, it uses redundant space
based on parity calculation per stripe

m Since it is protecting against a double failure, it adds two
check blocks per stripe of data.

m If p+1 disks total, p-1 disks have data; assume p=5
m Row parity disk is just like in RAID 4
m Even parity across the other 4 data blocks in its stripe

m Each block of the diagonal parity disk contains the even
parity of the blocks in the same diagonal

12

Example p=5

m Row diagonal parity starts by recovering one of the 4 blocks on the
failed disk using diagonal parity

m Since each diagonal misses one disk, and all diagonals miss a different disk,
2 diagonals are only missing 1 block

m Once the data for those blocks is recovered, then the standard RAID
recovery scheme can be used to recover two more blocks in the
standard RAID 4 stripes

m Process continues until two failed disks are restored

Data Data Data Data Row
N N N3 N1

Parity

Berkeley History: RAID-I

mRAID-I (1989)

m Consisted of a Sun 4/280 workstation
with 128 MB of DRAM, four dual-
string SCSI controllers, 28 5.25-inch
SCSI disks and specialized disk striping
software

mToday RAID is $24 billion dollar
industry, 80% non-PC disks sold in
RAIDs

13

Summary: RAID Technigues

- Disk Mirroring, Shadowing (RAID 1)

Each disk is fully duplicated onto its "shadow"
Logical write = two physical writes
100% capacity overhead
e Parity Data Bandwidth Array (RAID 3)
Parity computed horizontally

Logically a single high data bw disk

G-
W) =0

» High I/O Rate Parity Array (RAID 5)
Interleaved parity blocks

=0

Independent reads and writes

Logical write = 2 reads + 2 writes

Reconstruction policy (2)

Linux: favors performance over data availability
m automatically-initiated reconstruction, idle bandwidth
m virtually no performance impact on application
m very long window of vulnerability (>1hr for 3GB RAID)

Solaris: favors data availability over app. perf.

m automatically-initiated reconstruction at high BW
®m as much as 34% drop in application performance
m short window of vulnerability (10 minutes for 3GB)

Windows: favors neither!

m manually-initiated reconstruction at moderate BW

®m as much as 18% app. performance drop

m somewhat short window of vulnerability (23 min/3GB)

14

Example: single-fault result

m Compares Linux and Solaris reconstruction

m Linux: minimal performance impact but longer window of vulnerability to
second fault; Solaris: large perf. impact but restores redundancy fast

Linux z=- [e]

Hits per second
]
o
o
o
=
=
IS
=
o
z
o
3
. 3
=
o
o
w©
o
=
=
=
#ailures tolerated

Solaris

i} i i 3t Ll St Gl [ol g (i it

Time (minutes)

Review

Disks: Arial Density now 30%/yr vs. 100%/yr in 2000s

m TPC: price performance as normalizing configuration feature
m Auditing to ensure no foul play

m Throughput with restricted response time is normal measure
m Fault = Latent errors in system = Failure in service
m Components often fail slowly

m Real systems: problems in maintenance, operation as well as
hardware, software

15

Introduction to Queuing Theory.

Arrivals Departures
D ——— D ———

m More interested in long term, steady state than in startup =>
Arrivals = Departures

m Little’s Law:
Mean number tasks in system = arrival rate x mean response
time
m Observed by many, Little was first to prove

m Applies to any system in equilibrium, as long as black box not
creating or destroying tasks

Deriving Little’s Law,

m Time = elapsed time that we observe a system

observe

m Number,,, = number of (overlapping) tasks during Time .. e
m Time
Then

m Mean number tasks in system = Time, . mulateq / TiMe

accumulateq = SUM of elapsed times for each task

observe

m Mean response time = Time, ., mulateq/ NUMbeEr, o,

m Arrival Rate = Number,, / Time , .ne

Factoring RHS of 15t equation

m Time ¢/ Time =Time ¢/ Number,, x

accumulate observe accumulate:

Num bertask / Ti rT‘eobserve

Then get Little’s Law:
Mean number tasks in system = Arrival Rate x Mean response time

16

A Little Queuing Theory: Notation

System

Queue server

m Notation: o EI:D e

Time.,,,., average time to service a task
Average service rate = 1/ Time,,,,., (traditionally p)
Time average time/task in queue
Time average time/task in system
= Timequeue + Timeserver
Arrival rate avg no. of arriving tasks/sec (traditionally A)

ueue
system

average number of tasks in service
average length of queue
average number of tasks in service
Li g o Lengthqueue v Lengthserver .
ittle’s Law: Length.,, ., = Arrival rate x Time,,,,.,
(Mean number tasks = arrival rate x mean service time)

— Lengthserver
Length,,
Length

ueue
system

Server Utilization

For a single server, service rate = 1 / Time,,,,.,

m Server utilization must be between 0 and 1, since system is in
equilibrium (arrivals = departures); often called traffic intensity,
traditionally p)

m Server utilization
= mean number tasks in service

= Arrival rate x Time,,, o,

m What is disk utilization if get 50 I/O requests per second for disk
and average disk service time is 10 ms?

m Server utilization = 50/sec x 0.01 sec = 0.5

Or server is busy on average 50% of time

17

Time inlQueue vs. Length off Queue

We assume First In First Out (FIFO) queue

m Relationship of time in queue (Time to mean number of

tasks in queue (Length

queue)

queue) ?

[Tlmequeue = Lengthqueuex Time,,
+ “Mean time to complete service of task when new

task arrives if server is busy”
m New task can arrive at any instant; how to predict last part?

m To predict performance, need to know sometime about
distribution of events

Distribution of Random Variables

m Avariable is random if it takes one of a specified set of
values with a specified probability

m Cannot know exactly next value, but may know probability of all
possible values

m |/O Requests can be modeled by a random variable because
OS normally switching between several processes
generating independent I/0 requests

m Also given probabilistic nature of disks in seek and rotational
delays

m Can characterize distribution of values of a random variable
with discrete values using a histogram
m Divides range between the min & max values into buckets
m Histograms then plot the number in each bucket as columns
m Works for discrete values e.g., number of I/0O requests

m What about if not discrete? Very fine buckets

18

Characterizing distribution of a randem variable

Need mean time and a measure of variance
m For mean, use weighted arithmetic mean (WAM):
m f, =frequency of task i

m Ti=time for tasks i

weighted arithmetic mean
= fAXT1 + f2XT2 +. .. +fnXTn

m For variance, instead of standard deviation, use Variance
(square of standard deviation) for WAM:

m Variance = (fiXT12 + f2xT22 + . . . +fnxTn?) - WAM?

m If time is milliseconds, Variance units are square milliseconds

Got a unitless measure of variance?

Sguared! Coefficient of Variance (C?)

C2 = Variance / WAM?
= C = sqrt(Variance)/WAM = StDev/WAM
m Unitless measure

m Trying to characterize random events, but need distribution of
random events with tractable math

m Most popular such distribution is exponential distribution, where
C=1
m Note using constant to characterize variability about the mean

m Invariance of C over time = history of events has no impact on probability
of an event occurring now

m Called memoryless, an important assumption to predict behavior

m (Suppose not; then have to worry about the exact arrival times of requests
relative to each other = make math not tractable!)

19

Poisson Distribution

m Most widely used exponential distribution is Poisson

m Described by probability mass function:
Probability (k) = e@ x ak / k!
m where a = Rate of events x Elapsed time

m If inter-arrival times exponentially distributed & use arrival rate
from above for rate of events, number of arrivals in time
interval tis a Poisson process

Time in Queue

B Time new task must wait for server to complete a task assuming
server busy

m Assuming it’s a Poisson process

m Average residual service time = % x Arithmetic mean x (1 + C?)

m When distribution is not random & all values = average = standard
deviationis0 = Cis 0
= average residual service time = half average service time

m When distribution is random & Poisson = Cis 1 = average residual
service time = weighted arithmetic mean

20

Time in Queue

m All tasks in queue (Length,,.) ahead of new task must be
completed before task can be serviced

m Each task takes on average Time

server

m Task at server takes average residual service time to complete

m Chance server is busy is server utilization
= expected time for service is Server utilization X Average
residual service time

m Time = Length x Time

queue queue server
+ Server utilization x Average residual service time

m Substituting definitions for Length Average residual service

time, & rearranging:

queue,

Timeg,e e = TiMeg,, X Server utilization/(1-Server utilization)

Time infQueue vs. Length off Queue

m Length,e, =Arrival rate x Timegq,e

m Little’s Law applied to the components of the black box since they
must also be in equilibrium

m Given

il, TlmeeIueue =Time e

X Server utiIEzation/(l-Server utilization)

2. Arrival rate X Time,,,., = Server utilization

= Length, .. = Server utilization?/(1-Server utilization)
m Mean no. requests in queue? (If utilization is 50%)

m Length,.. =(0.5)2/(1-0.5)=0.25/0.5=0.5

= 0.5 requests on average in queue

21

M/M/1 Queuing Model

System is in equilibrium

m Times between 2 successive requests arriving, “inter-arrival
times”, are exponentially distributed

| Nur(r;bler of sources of requests is unlimited “infinite population
model”

m Server can start next job immediately

m Single queue, no limit to length of queue, and FIFO discipline, so
all tasks in line must be completed

m There is one server

m Called M/M/1 (book also derives M/M/m)
1. Exponentially random request arrival (C2=1)
2. Exponentially random service time (C2=1)
3. 1server

M standin§I for Markov, mathematician who defined and
analyzed the memoryless processes

Example

40 disk 1/0s / sec, requests are exponentially distributed, and
average service time is 20 ms

= Arrival rate/sec = 40, Time =0.02 sec

server —

On average, how utilized is the disk?

m Server utilization = Arrival rate X Time_,,,.,
=40x0.02=0.8 =80%

What is the average time spent in the queue?

m Time =Time

queue server

x Server utilization/(1-Server utilization)
=20 ms x 0.8/(1-0.8) =20 x4 =80 ms

3. What is the average response time for a disk request,
including the queuing time and disk service time?

=Time + Time = 80+20 ms = 100 ms

. T|mesystem queue server

22

How much better with 2X faster disk?

Average service time is 10 ms
=> Arrival rate/sec = 40, Time =0.01 sec

1. On average, how utilized is the disk?

m Server utilization = Arrival rate X Time,,.,
=40x0.01=0.4 =40%
2. What is the average time spent in the queue?

u Tlmequeue = Tlmeserver‘ . N Ko .
x Server utilization/(1-Server utilization)

=10 ms x 0.4/(1-0.4)=10x 2/3=6.7 ms
3. What is the average response time for a disk request,
including the queuing time and disk service time?

=Time + Time =6.7+10ms =16.7 ms

_ Tlmesystem queue server™

m 6X faster response time with 2X faster disk!
Ex: http://www.dcs.ed.ac.uk/home/jeh/Simjava/queueing/mm1_g/mm1_g.html

Value off Queuing Theory in practice

Learn quickly do not try to utilize resource 100% but how far
should back off?

m Allows designers to decide impact of faster hardware on
utilization and hence on response time

Works surprisingly well

23

Cross cutting Issues:
Buses = point-to-point links and switches

Standard width length Clock rate MB/s Max
(Parallel) ATA 8b 0.5m 133 MHz 133 2
| Serial ATA 2b 2m 3 GHz 300 ?
(Parallel) SCSI 16b 12m 80 MHz (DDR) 320 15
Serial Attach SCSI 1b 10 m - 375 16,256
PCl 32/64 0.5m 33 /66 MHz 533 ?
PCI Express 2b 0.5m 3 GHz 250 ?

m No. bits and BW is per direction = 2X for both directions
(not shown)

m Since use fewer wires, commonly increase BW via versions
with 2X-12X the number of wires and BW

Storage Example: Internet Archive

m Goal of making a historical record of the Internet
m Internet Archive began in 1996

m Wayback Machine interface perform time travel to see what the website
at a URL looked like in the past

m Ex: http://web.archive.org/web/* /www.ucf.edu

m It contains over a petabyte (10 bytes), and is growing by 20
terabytes (1012 bytes) of new data per month

m In addition to storing the historical record, the same hardware is
used to crawl the Web every few months to get snapshots of
the Interne.

24

Internet Archive Cluster

1U storage node PetaBox GB2000 from Capricorn
Technologies

m Contains 4 500 GB Parallel ATA (PATA) disk drives, 512
MB of DDR266 DRAM, one 10/100/1000 Ethernet
interface, and a 1 GHz C3 Processor from VIA (80x86).

m Node dissipates = 80 watts

m 40 GB2000s in a standard VME rack,
= 80 TB of raw storage capacity

m 40 nodes are connected with a 48-port 10/100 or
10/100/1000 Ethernet switch

m Rack dissipates about 3 KW
1 PetaByte = 12 racks

Estimated Cost

Via processor, 512 MB of DDR266 DRAM, ATA disk controller,
power supply, fans, and enclosure = $500

m 7200 RPM Parallel ATA drives holds 500 GB = $375

m 48-port 10/100/1000 Ethernet switch and all cables for a rack =
$3000

m Cost $84,500 for a 80-TB rack

160 Disks are = 60% of the cost

25

Estimated Performance

7200 RPM Parallel ATA drives holds 500 GB, has an average time
seek of 8.5 ms, transfers at 50 MB/second from the disk. The
PATA link speed is 133 MB/second

m performance of the VIA processor is 1000 MIPS

m operating system uses 50,000 CPU instructions for a disk /0

m network protocol stacks uses 100,000 CPU instructions to transmit a data
block between the cluster and the external world

m ATA controller overhead is 0.1 ms to perform a disk I/0

m Average I/O size is 16 KB for accesses to the historical record via
the Wayback interface, and 50 KB when collecting a new snapshot

m Disks are limit: = 75 1/Os/s per disk, 300/s per node, 12000/s per
rack, or about 200 to 600 Mbytes / sec Bandwidth per rack

m Switch needs to support 1.6 to 3.8 Gbits/second over 40 Gbit/sec
links

Estimated Reliability

CPU/memory/enclosure MTTF is 1,000,000 hours (x 40)
m PATA Disk MTTF is 125,000 hours (x 160)

m PATA controller MTTF is 500,000 hours (x 40)

m Ethernet Switch MTTF is 500,000 hours (x 1)

m Power supply MTTF is 200,000 hours (x 40)

m Fan MTTF is 200,000 hours (x 40)

m PATA cable MTTF is 1,000,000 hours (x 40)

m MTTF for the system is 531 hours (= 3 weeks)

m 70% of time failures are disks

20% of time failures are fans or power supplies

26

Summary

System
Queue server

Proc —>|:|:|:|—> I0C

. y) . s H
Little’s Law: Length, .., = rate x Timeg,,.
(Mean number customers ="arrival rate x mean service time)

m Appreciation for relationship of latency and utilization:
B Timeg gem,= Time
- Timeserver o . g .

x Server utilization/(1-Server utilization)

server +T| mequeue

[| T|mequeue

m Clusters for storage as well as computation
RAID: it’s reliability, not performance, that matters for storage

Infosessions

m Anyone still hasn’t done one?

m Markov chains (intro)

27

