CDA 5106 Advanced ComputerArchitecture 4

Module 6 | Memory: Hierarchy Review,

Review: of Mlemory: Hierarchy

m Introduction
m Cache Basics

m Cache Performance

m Six Basic Cache Optimizations
m Virtual Memory

m Conclusion

Many: Levels in Mlemory Hierarchy:

Pipeline
registers

Register file
1st-level cache)

Invisible only to high-level
language programmers

There can also be
a 3" (or more)
cache levels here

Usually made (on-chip)
invisible to 2nd-level cache
the programmer (on same MCM as CPU) Our focus
(even assembly Physical memory in this lecture

(usu. mounted on same board as CPU)
Virtual memory
(on hard disk, often in same enclosure as CPU) ~/
Disk files
(on hard disk often in same enclosure as CPU)

Network-accessible disk files
(often in the same building as the CPU)
Tape backup/archive system
(often in the same building as the CPU)
Data warehouse: Robotically-accessed room full of shelves of tapes
(usually on the same planet as the CPU)

programmers)

Simple Hierarchy Example

= Note many orders of magnitude change in characteristics
between levels:

Memory VOb
CPU bus us)
- Memory I/0 devices
Disk
- memaory
Register Cache Memory reference
reference reference reference
Size 1KB 16 MB 512 GB 1TB
Access Time (ns) 0.25-0.5 0.5-25 50-250 5,000,000

Bandwidth (MB/s) 50K-500K 5,000-20,000 2,500-10,000 50-500

CPU vs. Memory Performance Trends

Relative performance (vs. 1980 perf.) as a function of year

+55%/year
100 e £

10 R
Memory +7%/year

+35%/year __&—

1 i
O N VD oXx b O A
FFFFE N F P

D D D AN D> H PN DO
FF & S S S S

Year

Review: of Mlemory Hierarchy

m Introduction

N =

m Cache Performance

m Six Basic Cache Optimizations
m Virtual Memory

m Conclusion

Cache Basics

A is a (hardware managed) storage, intermediate in size,
speed, and cost-per-bit between the programmer-visible
registers and main physical memory

m The cache itself may be SRAM or fast DRAM
m There may be more than one level of caches
m Basis for cache to work:

® When a location is accessed, it and “nearby” locations are likely
to be accessed again soon
m “Temporal” locality - Same location likely again soon

m “Spatial” locality - Nearby locations likely

Four Basic Questions

m Consider levels in a memory hierarchy

m Use as unit of data transfer between cache levels and memory;
satisfy

m The level design is described by four behaviors
m Block Placement:
m Where could a new block be placed in the level?
m Block Identification:
m How is a block found if it is in the level?
m Block Replacement:
m Which existing block should be replaced if necessary?
m Write Strategy:

m How are writes to the block handled?

Block Placement Schemes

Fully associative: Direct mapped: Set associative:

block 12 can go block 12 can go block 12 can go
anywhere only into block 4 anywhere in set 0
(12 mod 8) (12 mod 4)

Block 01234567 Block 01234567 Block 01234567
no. no. no.

Cache

Set Set Set Set
0 1 2 3

Block frame address

Block 1
no. 01234567890

Direct-Mapped Placement

m A block can only go into one frame in the cache

m Determined by block’s address (in memory space)

m Frame number usually given by some low-order bits of block address
m This can also be expressed as:
m (Frame number) = (Block address) mod (Number of frames/sets in cache)
®m |n a direct-mapped cache

m block placement & replacement are both completely determined by the
address of the new block that is to be accessed

Direct-Mapped ldentification

Tags Block frames

Address
Tag |Index

Decode & Row Select <
One Selected &Compared

4

Mux
Compare Tags select
1 Data Word

Fully-Associative Placement

m One alternative to direct-mapped is:

m Allow block to fill any empty frame in the cache

m How do we then locate the block later?
m Can associate each stored block with a tag
m |dentifies the block’s location in cache

m When the block is needed, treat the cache as an associative memory,
using the tag to match all frames in parallel, to pull out the appropriate
block

m Another alternative to direct-mapped is placement under full
program control

m A register file can be viewed as a small programmer-controlled cache (w.
1-word blocks)

Fully-Associative Identification

Block addrs

Block frames

Address
Block addr

Parallel Compare <
& Select

Note that, compared to Direct:

eMore address bits have to be
stored with each block frame. _

*A comparator is needed for Hit Z{‘;:t
each frame, to do the parallel Data Word

associative lookup.

Set-Associative Placement

m The block address determines not a single frame, but a frame
set (several frames, grouped together)

m Frameset# = mod

m The block can be placed associatively anywhere within that
frame set

m [f there are n frames in each frame set, the scheme is called
“n-way set-associative”

m Direct mapped = 1-way set-associative

Fully associative: There is only 1 frame set

Set-Associative ldentification

Tags Block frames
Address
\
« Note:
Set Select 4
< separate
Parallel Compare within the Set . sEie
eIntermediate between direct-
mapped and fully-associative in /
number of tag bits needed to be
associated with cache frames. \
o Still need a comparator for each Hit Mux
frame (but only those in one set select
need be activated). =t ol

Cache Size Eguation

= Simple equation for the size of a cache:

= (Cache size) = (Block size) x (Number of sets) x (Set Associativity)

= Can relate to the size of various address fields:
" (BlOCk size) = 2(#ofoffset bits)
= (Number of sets) = 2(# of indexbits)

= (# of tag bits) = (# of memory address bits)
— (# of index bits) — (# of offset bits)

< Memory address >

Block address Block
Tag Index offset

Replacement Strategies

m Which block do we replace when a new block comes in (on cache
miss)?

m Direct-mapped: There’s only one choice!

m Associative (fully- or set-):
m If any frame in the set is empty, pick one of those.
m Otherwise, there are many possible strategies:
m Random: Simple, fast, and fairly effective

m Least-Recently Used (LRU), and approximations thereof

m Require bits to record replacement info., e.g. 4-way requires 4! = 24
permutations, need 5 bits to define the MRU to LRU positions

m FIFO: Replace the oldest block.

Implementation off LRU Replacement

mPure LRU, 4-way = use 6 bits (minimum 5 bits)

122 | 193 [134 | 293 | 234 | 354 |

mPartitioned LRU (Pseudo LRU):

m Instead of recording full combination, use a binary tree to maintain only (n-1) bits
for n-way set associativity

m 4-way example: ‘1’ represents left side is MRU and vice versa

State Replace Next
State 0->1
00x Lineo 11 R —
01x Linel 10_ n
1x0 Line2 01 \ / \ \
1x1 Line3 0_0 Line0 Linel Line2 Line3 M LRU

X : don’t care _ :remains same Replacement

Write Strategies

m Most accesses are reads, not writes
m Especially if instruction reads are included

m Optimize for reads — performance matters
m Direct mapped can return value before valid check

m Writes are more difficult
m Can’t write to cache until we know the right block
m Object written may have various sizes (1-8 bytes)

m When to synchronize cache with memory?
m Write through - Write to cache and to memory
m Prone to stalls due to high bandwidth requirements

m Write back - Write to memory upon replacement
® Memory may be out of date

Another Write Strategy

m Maintain a FIFO queue (write buffer) of cache frames (e.g. can
use a doubly-linked list)

m Meanwhile, take items from top of queue and write them to
memory as fast as bus can handle

m Reads might take priority, or have a separate bus

m Advantages: Write stalls are minimized, while keeping memory
as up-to-date as possible

10

Write Miss Strategies

What do we do on a write to a block that’s not in the cache?

m Two main strategies: Both do not stop processor
m Write-allocate (fetch on write) - cache the block

m No write-allocate (write around) - write to memory
m Write-back caches tend to use
m Write-through tends to use

m Use to indicate write-back is needed in write-back
strategy

Write-Allocate vs. No-Write-Allocate

m Example code:

WriteMem[100]; Op Write-Allocate No-Write-Allocate
WriteM '
ritehERR 0L WriteMem[100] Miss Miss
ReadMem[200];
WriteMem([200]; WriteMem([~00] Miss Miss
WriteMem[100]. ReadMem([200] Hit Miss
WriteMem[200] Hit Hit
Assume cache starts empty.
Calculate number of hits and WriteMem[(0] Hit Miss

misses for each write miss policy.

11

Instruction vs. Data Caches

m Instructions and data have different patterns of temporal and
spatial locality

m Also instructions are generally read-only
m Can have separate instruction & data caches
m Advantages
m Doubles bandwidth between CPU & memory hierarchy
m Each cache can be optimized for its pattern of locality
m Disadvantages
m Slightly more complex design

m Can’t dynamically adjust cache space taken up by instructions vs. data

Inst./Data Split and Unified Caches

I-Cache D-Cache Unified Cache
8KB 8.16 44.0 63.0
16KB 3.82 40.9 51.0
32KB 1.36 38.4 43.3
64KB 0.61 36.9 39.4
128KB 0.30 35.3 36.2
256KB 0.02 32.6 32.9

m Misses per 1000 accesses

® Much lower instruction miss rate than data miss rate

12

Review! ofi Memory Hierarchy:

m Introduction
m Cache Basics

|

m Six Basic Cache Optimizations
m Virtual Memory

m Conclusion

Basic Cache Performance Formulas

Misses per instruction

Miss Rate = . '
Memory accesses per instruction

= Memory access - data transfer requests (on load/store) and
instruction memory access (always 1 per instruction)

Average memory accesstime = Hit time + Miss rate X Miss penalty

= Units of measurement:
= Hit time, Miss penalty — ns or clock cycles
= Miss rate — unitless

= Average memory access time — ns or clock cycles

13

Cache Performance Equations

m Memory stalls per program (blocking cache):

. MemoryStall Cycles = ICX(MemOI'yACcesses

)X Miss Rate X Miss Penalty

Instruction
Misses .
Memory Stall Cycles = IC X (—————) X Miss Penalty
Instruction
m CPU time formula:
Memory Stall Cycles

CPU Time = ICX(CPI,, +)X CycleTime

Instruction

m More cache performance later

Cache Performance Example

m Ideal CPI=2.0, memory references / inst=1.5, cache size=64KB, miss
penalty=75ns, hit time=1 clock cycle

m Compare performance of two caches:
m Direct-mapped (1-way): cycle time=1ns, miss rate=1.4%
m 2-way: cycle time=1.25ns, miss rate=1.0%

m Quick test — calculate average memory access time for each?

Miss Penalty, ., = {715’”—‘ =75 Cycles
ns

Miss Penalty, ., = {17255’” -‘ =60 Cycles
25ns

CPU Time,_,, = IC X (2.0+1.4%x1.5x75) x Ins = 3.575x IC
CPU Time,_,,, =ICx (2.0+1%x1.5x60) x1.25n5 =3.625x IC

14

Out-Of-Order Processor:

m Define new “miss penalty” considering overlap

‘ Mem.StallCycles Misses
Instruction Instruction

X (Total misslatency — Overlapmisslatency)

m Compute memory latency and overlapped latency

m Example (from previous slide)

m Assume 30% of 75ns penalty can be overlapped, but with longer (1.25ns)
cycle on 1-way design due to Out-of-Order

T5nsx70%
1.25ns

CPU Time,_,, goo = IC X (2.0+1.4%x1.5%42) x1.25n5 = 3.60x IC

Miss Penalty, . = { _‘ =42 Cycles

Cache Performance Improvement

Average memory access time = (Hit time) + (Miss rate)x(Miss penalty

— g
~—

m Reduce miss penalty: “Amortized miss penalty”

m Multilevel cache; Critical word first and early restart; priority to read miss;
Merging write buffer; Victim cache

m Reduce miss rate:

m Larger block size; Increase cache size; Higher associativity; Way prediction
and Pseudo-associative caches; Compiler optimizations

®m Reduce miss penalty/rate via parallelism:

m Non-blocking cache; Hardware and Compiler-controlled prefetching

m Reduce hit time:

m Small simple cache; Avoid address translation in indexing cache; Pipelined
cache access; Trace caches

15

Review: ofi Memory Hierarchy:

m Introduction
m Cache Basics

m Cache Performance
|

m Virtual Memory

m Conclusion

Three Tiypes of Misses

m Compulsory

m During a program, the very first access to a block will not be in the cache
(unless pre-fetched)

m Capacity

m The working set of blocks accessed by the program is too large to fit in
the cache

m Conflict

m Unless cache is fully associative, sometimes blocks may be evicted too
early because too many frequently-accessed blocks map to the same
limited set of frames/sets.

16

Miss Rate Analysis

& 1-way
W 2-way
o d-way
O 8-way
M Capacity

F Compulsory

Total Miss Rate | %

64 128
Cache size (KB)

Miss Rate Distribution 57

512 1024

First Optimization: Larger Block Size

- m Reduces compulsory misses
m Due to spatial locality
m More accesses are to a pre-fetched block
m [ncreases capacity misses
m More unused locations pulled into cache
m May increase conflict misses (slightly)
m Fewer sets may mean more blocks utilized per set

m Depends on pattern of addresses accessed

m Increases miss penalty - longer block transfers

17

Block Size Effiect

Block size

Miss rate actually goes up if the block is too large relative to the cache size

Block Size vs. Miss Rate

Cache Size

Block Size 4K 16K 64K 256K
16 8.57% 3.94% 2.04% 1.09%
32 7.24% 2.87% 1.35% 0.70%

64

18

Second Optimization: Larger Caches

Keep block size, set size, etc. constant
m No effect on compulsory misses

m Block still won’t be there on its 1st access
m Reduces capacity misses

m More capacity
m Reduces conflict misses (in general)
m Working blocks spread out over more frame sets
m Fewer blocks map to a set on average

m Less chance that the number of active blocks that map to a given set
exceeds the set size

But, increases hit time (and cost)

Block Size vs. Avg. Access Time

Cache Size

Block Size Miss Penalty 16K 64K

19

Third Optimization : Higher Associativity

Keep cache size & block size constant

m Decreasing the number of sets

No effect on compulsory misses

No effect on capacity misses
m By definition, these are misses that would happen anyway in fully-
associative
m Decreases conflict misses

m Blocks in active set may not be evicted early

m Can increase hit time (slightly)
m Direct-mapped is fastest

®m n-way associative lookup a bit slower for larger n

Performance Comparison

m Assume:
HitTime,_,,, = CycleTime, ,, ~ Miss Penalty =25XCycleTime,_,,,

HitTime, ,, =1.36XCycleTime,
HitTime,_,,, =1.44xCycleTime,
HitTime,_,,, =1.52%CycleTime,_,,,

m 4KB, 1-way miss-rate=9.8%; 4-way miss-rate=7.1%

Average Mem Access Time,_,,, =1.00+ Miss RateX25
=1.00+0.098x25=3.45

Average Mem AccessTime,_,,, =1.44+ Miss RateX 25
=1.44+0.071x25=3.215

20

Higher Set-Associativity:

Cache Size 2-way
4KB 3.44 3.25 322 3.28
8KB 2.69 2.58 2.55 2.62
16KB 203 2.40 2.46 2.53
32KB 2.06 2.30 2.37 2.45
64KB 1.92 2.14 2.18 2.25
128KB 1.52 1.84 1.92 2.00
256KB 132 1.66 1.74 1.82
512KB 1.20 1.55 1.59 1.66
m Higher associativity increases the cycle time
m The table shows the average memory access time
m 1-way is better in most of the cases

4t Optimization: Multi-Level Caches

m What is important?

m faster caches?

m or larger caches?
m Average memory access time

m Hit time (L1) + Miss rate (L1) x Miss Penalty (L1)
m Miss penalty (L1)

m Hit time (L2) + Miss rate (L2) x Miss Penalty (L2)
m Can plug 2nd equation into the first:

m Average memory access time =

Hit time(L1) + Miss rate(L1) x (Hit time(L2) + Miss rate(L2) x Miss penalty(L2))

21

Multi-level Cache Terminology

® “Local miss rate”
m The miss rate of one hierarchy level by itself
m # of misses at that level / # accesses to that level

m e.g. Miss rate(L1), Miss rate(L2)

m “Global miss rate”
m The miss rate of a whole group of hierarchy levels

m # of accesses coming out of that group
(to lower levels) / # of accesses to that group

m Generally this is the product of the miss rates at each level in the group

m Global L2 Miss rate = Miss rate(L1) x Local Miss rate(L2)

2 Cache Perfermance

99% 99%

—4— Local miss rate
.. —=— Global miss rate
—A— Single cache miss rate

Miss rate B, |boereseremmmmneesrersrer e o e

L. 6% .-- S - - " - . e
10% 8% 5% 4y 4% 4% 3% 29 2% 2% 1o 1%
0% 1L4% 4% I 3% —L 3%])
4 8 16 32 64 128 256 512 1024 2048 4096
Cache size (KB)
1. Global cache miss rate is similar to the single cache miss rate
2. Local miss rate is not a good measure of secondary caches

22

Effect of 2-level Caching

m L2 size usually much bigger than L1
m Provide reasonable hit rate
m Decreases miss penalty of 1st-level cache

® May increase L2 miss penalty

m Multiple-level cache inclusion property

m Inclusive cache: L1 is subset of L2; simplify cache coherence mechanism,
effective cache size = L2

m Exclusive cache: L1, L2 are exclusive; increase effect cache sizes = L1 + L2

m Enforce inclusion property: Backward invalidation on L2 replacement

5t Opt.: Read Misses Tiake Priority

Processor must wait on a read, not on a write

m Miss penalty is higher for reads to begin with and more benefit from
reducing read miss penalty

Write buffer can queue values to be written
m Until memory bus is not busy with reads
m Careful about the memory consistency issue

What if we want to read a block in write buffer?
m Wait for write, then read block from memory

m Better: Read block out of write buffer

Dirty block replacement when reading
m Write old block, read new block - Delays the read
m Old block to buffer, read new, write old (better)

23

Miss rate

6 Opt.: Avoid Address Tiranslation

m |n

16%|

14%

12%

10%)|

8%

8%

systems with virtual address spaces, virtual addr. must be
mapped to physical addresses

m If cache blocks are indexed/tagged w. physical addresses, we must
do this translation before we can do the cache lookup. Long hit
time!

m Solution: Access cache using the virtual address. Call this a
“Virtual Cache”

Drawback: Cache flush on context switch

Benefit of PID Tags in Virtual Cache

m Can fix by tagging blocks with Process Ids (PIDs)

Another problem: “Aliasing”, i.e. two virtual addresses mapped to same
real address

m Fix with anti-aliasing or page coloring

Varying cache size changes mapping of memory blocks to cache blocks —
increase in miss rate from 128 k to 256K

W/o PIDs, purge

W/o context switching

Review ofi Memory Hierarchy:

m Introduction
m Cache Basics

m Cache Performance

m Six Basic Cache Optimizations
|

m Conclusion

Why VirtuallMemory?

m Sharing a smaller amount of physical memory
m Each process uses a small part of address space

m Needs a protection mechanism

m Virtual memory was invented to automatically manage two levels
of memory hierarchy
m Old days: main memory small and programs - big

®m Programmer: divide the programs into parts (overlays) and load into
memory so that the part does not access outside physical main memory

m |t also enables relocation

25

Virtual Memony:

Virtual Physical
address address

(0] A 0
4K B 4K C
8K C 8K
12K D 12K Physical
16K A main memory
Virtual memory 20K
24K B
28K

i A
Bape |

Disk

The addition of the virtual memory mechanism complicated the cache access

Paging vs. Segmentation

Paging

Segmentation

= Paged Segment: Each segment has integral number of pages for
easy replacement and can still treat each segmentation as a unit

Page Tables and Virtual Memory

m Page tables can be very large

m (32 - 64 bit logical addresses today)

m If (only) 32 bits are used (4GB) with 12 bit offset (4KB pages), a
page table may have 22{20} (1M) entries. Every entry will be at
least several bytes.

m The entire page table can take up a lot of main memory.

m We may have to use a 2-level (or more) structure for the page
table itself.

Multilevel Page Tables

With a 2 level page table (386, Pentium), the page number is
split into two numbers pl and p2

m plindexes the outer page table (directory) in main memory
whose entries point to a page containing page table entries for
some range of virtual memory

m The second level entry is indexed by p2

Iogiaallacisty m Except for the directory (outer table),
PP d | page tables entries can be swapped in and
: { out as needed

P
-

pz{

outer-page
table

a
Y

page of
page taktle

27

Inverted Page Table

= One entry per FRAME rather than one per PAGE
= Search for matching page #

_— logical st
address [1 g iy
e _——T — T 1 —— T address _
CFU P pid| p | O] ji1 | ad
P 4
JE— L~ 1
A |
e 3|
! o1
w |

-

it T =
PG p

page table

Sharing Pages

Several users can share one copy of the same program

m Shared code must be reentrant (non self-modifying) so that
more than one process can execute the same code

m With paging, each process will have a page table with
entries pointing to the same code frames

m Only one copy of each page is actually in a frame in main memory

Each user also needs to have its own private data pages

28

Sharing Pages: Text Editor

ed1 'i‘ 0
ed 2 6 1| data
ed 3 page table 2| data3
data 1 Pl 3| edi
Logical address space . 4 ed2
of process P,)
5
ed 3
data 2
e 7| dataZ
8
9
ed 3 e
data 3 e [
Logical address space
2

Segmentation

m Processes actually consist of logical parts (segments), such as:
B one or more executable segments
m one or more data segments

m stack segment

m Another idea: make allocation more flexible by loading
segments independently

29

Segmentation

Divide each program into unequal size blocks called segments

m When a process is loaded into main memory, its individual
segments can be located anywhere

m The methods for allocating memory to segments are those we
have seen so far: just replace process by segment

m Because segments are of unequal size, this is similar to dynamic
partitioning (at the segment level)

Logical address used in simple segmentation
with dynamic partitioning

m We need a segment table for each process, containing:
m the starting physical address of that segment

m the length of that segment (for protection)

m A CPU register holds the starting address of the the segment
table

m Given a logical address (segment, offset) = (s,d), we access the
sth entry in the segment table to get base physical address k and
the length | of that segment

m The physical address is obtained by adding d to k

m The hardware also compares the offset d with the length | to determine if
the address is valid

30

Address Translation|in Segmentation

Virtual Address
2 ,/—\
4)
da i =
R[N
g
Program Segmenlation Main Memory

Logical-to-Physical Address Translationiin
Segmentation

) 16-bit logical address
4-]3il segmemj 12-hit offset

[0 0Jo[1]oJo[1[0[1[1[1[1[0[0[0 0]
S

Length Base l
0 [001011101110[0C00D01000000000C]
1 [01II10011110[001000000010000 ol—r(f

.
L

Process segment table

e

[0]o 1]oJoJo[1[1]0]0]0]1[0[0[0]0

16-bit physical address

31

Sharing in Segmentation Systems

The segment tables of 2 different processes can point to the
same physical locations

m Example: one shared copy of the the code segment for the text
editor

m Each user still needs its own private data segment

= more logical than sharing pages

Segment Sharing: Text Editor Example

r ‘ editor]
| !
segment 0
43062
data 1 lirmit base
0] 25286 | 43062
" 1l aans | enaan editor
SEngIE"I 1 1 el DoAo
v segment table
process P,
logical address space 68348 5
ata 1
process PI 72773
90002
slor data 2
98553
segment 0
lirmit base
data 2
025286 | 43062 Eiecalnanon
segment 1 1| 8850 | 90003

segment table
process P,

logical address space

process P,

32

Evaluation of Simple Segmentation

Advantage: memory allocation unit is a logically natural view of
program
B Segments can be loaded individually on demand (dynamic linking)
m Natural unit for protection purposes
m No internal fragmentation
m Disadvantage: same problems as dynamic partitioning
m External fragmentation
m Unlike paging, it is not transparent to programmer

m No simple relationship between logical and physical address

Combined Segmentation and Paging

m Combines advantages of both

m Several combinations exist. Example:
m Each process has:
m one segment table
m one page table per segment
m Virtual address consists of:

m segment number: index the segment table to get starting address of the
page table for that segment

m page number: index that page table to obtain the physical frame number

m offset: to locate the word within the frame

m Segment and page tables can themselves be paged

33

Address liranslation in Combined
Segmentation/Paging System

! ! d
Virtual Address i ; | i
200 e | O] E E Frame # Offset ;
A | i L i A
[
|
! 1 lomd])i
J i “ P"ra;m
] .]
' ' ' M

Program Segmentation Main Memory

Advantages of Segmentation + Paging

m Solves problems of both loading and linking.

m Linking a new segment amounts to adding a new entry to a segment
table

m Segments can grow without having to be moved in physical
memory (just map more pages!)

m Protection and sharing can be done at the ‘logical’ segment
level

34

Paging versus Segmentation

Segment
Words per One Two (segment and offset)
address
Programmer Invisible to application programmer May be visible to application
visible? programmer
Replacing a Invisible to application programmer May be visible to application
block programmer
Memory use Internal fragmentation (unused portion | External fragmentation (unused pieces
inefficiently of page) of main memory)
Efficient disk Yes - adjust page size to balance Not always (small segments may transfer
traffic access/transfer time just a few bytes)

Four Important Questions

Where to place a block in main memory?
m Operating system takes care of it
m Replacement takes very long — fully associative

How to find a block in main memory?
m Page table is used
m Offset is concatenated when paging is used
m Offset is added when segmentation is used

Which block to replace when needed?
m Obviously — LRU is used to minimize page faults

What happens on a write?
m Magnetic disks takes millions of cycles to access
m Always write back (use of dirty bit)

35

Addressing Virtual Memories

Virtual address

¥ Virtual page number Page offset I

Main
memory

Page

Physical address

Fast Addrress Calculation

m Page tables are very large
m Kept in main memory
m Two memory accesses for one read or write
m Remember the last translation

m Reuse if the address is on the same page

m Exploit the principle of locality
m If access have locality, the address translations should also have locality
m Keep the address translations in a cache

m Translation look-aside buffer (TLB)

m The tag part stores the virtual address and the data part stores the page
number

36

Yirtual Address
i Page #‘ Offset |
i

Tiranslation Lookaside Buffer

Translation

r-é
b
)

—

Page Table

TLB miss

Frame|
‘ Ahsent

TLB Example: AMD Opteron

Virtual page Page
number cfiset

o e
i i
!L ad
i page
i {

3 =36 <12=
| 1
| I §
@ <1 e <l><1= <3C= <20
V AW US D A Tag Physical adcress
=l
i
b=
e (Low-order 12 bits
1 [I N I O | | of address)
l_“] 2=
e A0t
@___wamx | 7 0 @ phyeica
- = address

(High-crder 28 bits of address)

37

Protection of Virtual Memory.

m Maintain two registers
m Base
m Bound
m For each address check
m base <= address <= bound
m Provide two modes
m User

m OS (kernel, supervisor, executive)

Infosessions

m Hardware virtualization
m Virtual machine concept

m Hardware abstraction

38

