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Module 2 | Pipelining Overview

m Review pipelining
m Goal: increasing exploitation of ILP
m Pipelining hazards

m Look at integrating FP hardware into the pipeline




Designing a processor

Design the ISA

Classify instructions for the ISA (e.g., MIPS):
— Memory references
— Register-Register ALU Operations
— Register-Immediate ALU Operations
— Branches

Work out the execution for each operation class

Design appropriate hardware

Look for opportunities to improve...

..while maintaining correct execution

MIPS Instruction Layout
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How to Execute an Instruction

m Instruction fetch (“IF”)
m IR = Mem[PC]
m NPC=PC+4
m Instruction decode/Register fetch (“ID”)
m A=Regs[IR; ;4]
m B =Regs[IR;; ;5]
m Imm = sign-extend(IR;¢ 5;)
m Execute (“EX”)
Memory reference: ALUOutput = A + Imm
Reg/Reg ALU Operation: ALUOutput =A op B

Reg/Immediate ALU Operation: ALUOutput = A op Imm
Branch: ALUOutput = NPC + Imm; Cond = (A op 0)

Executing an Instructioni (cont.)

m Memory Access/Branch completion (“MEM*)
m Memory Reference:
®m Load_Mem_Data = Mem[ALUOutput]
® Mem[ALUOutput] =B
m Branch: If (cond) PC = ALUOutput, else PC = NPC
m Write back (“WB”)
m Reg-Reg ALU Operation: Regs[IR;¢ ,,] = ALUOutput
m Reg-Immediate ALU Operation: Regs[IR;; ;5] = ALUOutput

m Load instruction: Regs[IR;; ;] = Load_Mem_Data




Executing an Instructioni (cont.)

m Instruction fetch (“IF”)
m IR =Mem[PC]
m NPC=PC+4

Instruction

cache linst.

req.|

Executing an Instructioni (cont.)

m Instruction decode/Register fetch (“ID”)
m A =Regs|rs]
m B =Regs[rt]

m Imms=sign-extend(IR,, )

Regs
IR

(inst.
reg.)

M

sign
extend




Executing an Instructioni (cont.)

m Execute (“EX”)

el
m Memory reference: e
ALUOutput= A + Imm [npc] |
m Reg/Reg ALU Operation: W

ALUOutput=Aop B —
m Reg/Immediate ALU Operation: — L]
ALUOutput= A op Imm |
m Branch: ﬁ_J
ALUOutput= NPC + Imm; [ B |- ‘
Cond = (A op 0)
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Executing an Instructioni (cont.)

® Memory Access/Branch completion
(MMEMM) (_‘ ‘

m Memory Reference: alle é }_l
m Load_Mem_Data = Mem[ALUOutput] | rc L)
/* Load */
® Mem[ALUOutput] =B
/* Store */

m Branch: If (cond) PC = ALUOutput,

else PC = NPC b4 -.




Executing an Instructioni (cont.)

m Write back (“WB”)
m Reg-Reg ALU Operation: Regs[rd] = ALUOutput
m Reg-Immediate ALU Operation: Regs[rt] = ALUOutput
m Load instruction: Regs[rt] = Load_Mem_Data

Five-stage statically scheduled pipeline
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RISC Pipeline

Clock number

1 2 E 4 F 7 E H
iF jis} o MEM  WB
i3 m EX  MEM  WE
F 1 EX MEM WB
IF D EX MEM  WB
i o EX MEM  WB

Example:

12% branch freq. (2 cycles)
10% store freq. (4 cycles)

All other instructions: 5 cycles

Overall CPI unpipelined -? Pipelined - ?

Performance Issues in Pipelining

® Imbalance among the pipe stages
m Pipelining overhead

m Clock Skew

Example:
Use frequencies from previous example

Clock cycle = 1ns
Clock skew & setup = 0.2ns
Ignore latencies

Speedup from pipeline - ?




Pipeline characteristics

m Parallelism
- m 1instruction issued per cycle
m CPI Pipelined = Ideal CPI + Pipeline stall cycles/instruction

m Reduced performance due to hazards:
m Structural
m E.g. single memory — need to provide sufficient resources
m Data
m Use forwarding/stall
m Control
m Cope with hardware and software techniques

Speed Up Eguation for Pipelining

CPL, . iinea = Ideal CPI + Average Stall cycles per Inst

Speedup = Ideal CPI x Pipeline depth Cycle Time, icclined
PeeCP = Ideal CPI + Pipeline stall CPT * Cycle Time, .

For simple RISC pipeline, ideal CPI = 1:

Pipeline dep‘l‘h % CYC|C Timeunpipelined

Speedup =
peedup 1 + Pipeline stall CPT  Cycle Time,,cjined




Example: Dual-port vs. Single-port

m  Machine A: Dual ported memory

- m Machine B: Single ported memory, but its pipelined implementation has a 1.05
times faster clock rate

m Ideal CPI = 1 for both

B Loads are 40% of instructions executed (Pipeline Stall CPI = 0.4)
SpeedUp, = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
= Pipeline Depth

SpeedUpg = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clock /1.05)

unpipe
= (Pipeline Depth/1.4) x 1.05
=0.75 x Pipeline Depth

SpeedUp, / SpeedUpj, = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

m  Machine A is 1.33 times faster

Structural hazard example

Instruction 1

Instruction 2 Mem Reg \? Mem Reg

Instruction 3 Mem
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Data hazard examples

e PTOGFAM €X@cUtion order (in instructions)

Three Generic Data Hazards

m Read After Write (RAW)
Instr, tries to read operand before Instr, writes it

CI: add rl,r2,r3
J: sub r4,rl,r3

m Caused by a “Dependence” (in compiler nomenclature). This
hazard results from an actual need for communication.
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Three Generic Data Hazards

m Write After Read (WAR)

Instr, writes operand before Instr,reads it

I: sub r4,rl,r3
J: add rl,r2,r3
K: mul r6,rl, r7

m Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

m Can’t happen in MIPS 5 stage pipeline because:
m All instructions take 5 stages, and

m Reads are always in stage 2, and

m  Writes are always in stage 5

Three Generic Data Hazards

Write After Write (WAW)
Instr, writes operand before Instr, writes it.

I: sub rl,r4,r3
J: add rl,r2,r3
K: mul r6,rl, r7

m Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

m Can’t happen in MIPS 5 stage pipeline because:
m All instructions take 5 stages, and
m  Writes are always in stage 5

Will see WAR and WAW in more complicated pipes
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Data hazard remedy — forwarding

| | r h - = | H
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e el

e ee—een—-———— PrOgIram exxecution order (in instructions)

XOR R10, R1, R11

Data hazard needing stall

LD R1,0(R2)

DSUB R4, R1, R5

AND R8, R1, R7
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ORR8, R1, R9
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Stalled pipeline

DSUB RA,RL,R5

OR  R&,RL,R9

Infosessions

- m Binary arithmetic review
m Signed number representations

m Carry look-ahead adders
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Software Scheduling to Avoid Hazards

Try producing fast code for
a=b+c;
d=e-f;
assuming a, b, ¢, d ,e, and f in memory.
Slow code: Fast code:
Lw Rb,b LW Rb,b
LW Rc,c LW Re,c
ADD Ra,Rb,Rc LW Re,e
SwW a,Ra ADD Ra,Rb,Rc
LW Re,e LW Rf,f
LW Rf.f SW a,Ra
SuUB Rd,Re,Rf SUB Rd,Re,Rf
sw d,Rd SW d,Rd
Compiler optimizes for performance. Hardware checks for safety.

Control Hazard on Branches

Three Stage Stall

rl,r3,36|

r2,r3,r5

r6,rl, r7

22: add r8,rl,r9

36: xor rl0,rl, rll

What do you do with the 3 instructions in between?

How do you do it?

Where is the “commit”?
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Branch Stall Impact

m |[f CPl=1, 30% branch,
Stall 3 cycles => new CPI = 1.9!

® Two part solution:
m Determine branch taken or not sooner, AND
m Compute taken branch address earlier

m MIPS branch tests if register =0 or #0

m MIPS Solution:

m Move Zero test to ID stage

m Adder to calculate new PC in ID stage

m 1 clock cycle penalty for branch versus 3

Branch Modification

11.15

Instruction ) .
memory | ] MEMMWB. IR | Registers

Data
memory




Four Branch Hazard Alternatives

#1:S

Fou

#4: D

tall until branch direction is clear

#2: Predict Branch Not Taken

Execute successor instructions in sequence

“Squash” instructions in pipeline if branch actually taken
Advantage of late pipeline state update

47% MIPS branches not taken on average

PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken

53% MIPS branches taken on average
But haven’t calculated branch target address in MIPS
m MIPS still incurs 1 cycle branch penalty

m Other machines: branch target known before outcome

r Branch Hazard Alternatives

elayed Branch
Define branch to take place AFTER a following instruction

branch instruction
sequential successor;

sequential successor;\\\\\
Branch delay of length n

sequential successor,

branch target if taken

1 slot delay allows proper decision and branch target
address in 5 stage pipeline

MIPS has one delay slot
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Branch Delay Slot Scheduling

(a) From before

(b) From target (c) From fall-through

DADD R1, R2, R3 DADD R1, R2, R3
DSUB R4, R5, R6
if R2 =0 then if R1 = 0 then
Delay slot DADD R1, R2, R3 Delay slot
if R1 = 0 then OR R7, R8, R9
Delay slot DSUB R4, R5, R6

becomes becomes becomes

DADD R1, R2, R3

DSUB R4, R5, R6

.-

if R1 =0 then

ORR?7, R8, R9

if R2 = 0 then

DADD R1, R2, R3

DADD R1, R2, R3

if R1 =0 then

DSUB R4, R5, R6

DSUB R4, R5, R6

Notes on scheduling the delay slot

Scheduling an op that is above and independent of the branch
into the delay slot, as in (a) is preferable

m If that is not possible, and we know the branch is usually taken,
then as in (b) we can schedule from the target of the branch

m Otherwise, one of the fall-through instructions can be moved to
the delay slot as in (c)

m In cases (b) and (c) it must not be the case that the moved
instruction alters program correctness if the branch goes in the
unexpected direction
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DelayediBranch

m Compiler effectiveness for single branch delay slot:
m Fills about 60% of branch delay slots

m About 80% of instructions executed in branch delay slots
useful in computation

m About 50% (60% x 80%) of slots usefully filled

m Delayed Branch downside: As processors go to
deeper pipelines and multiple issue, the branch
delay grows and need more than one delay slot

m Delayed branching has lost popularity compared to more
expensive but more flexible dynamic approaches

m Growth in available transistors has made dynamic
approaches relatively cheaper

Evaluating Branch Alternatives

Pipeline depth

Pipehige Sosedup = 1 +Branch frequency xBranch penalty

Assume 4% unconditional branch, 6% conditional branch-
untaken, 10% conditional branch-taken

Scheduling  Branch  CPl speedupv. speedupv.

scheme penalty unpipelined stall
Stall pipeline B 160 =l 1.0
Predict taken 1 1.20 4.2 1733
Predict not taken 1 1.14 4.4 1.40
Delayed branch 0.5 1.10 4.5 1.45
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Problems with Pipelining

Exception: An unusual event happens to an instruction during
its execution
m Examples: divide by zero, undefined opcode

m Interrupt: Hardware signal to switch the processor to a new
instruction stream

m Example: a sound card interrupts when it needs more audio output
samples (an audio “click” happens if it is left waiting)

® Problem: It must appear that the exception or interrupt must
appear between 2 instructions (I, and I,,,)
m The effect of all instructions up to and including |, is totally complete
m  No effect of any instruction after |, can take place

m The interrupt (exception) handler either aborts program or
restarts at instruction [,

Precise Exceptions in Static Pipelines

Inst. Data:
Mem Bisleicielz Mems= w

Iffegal

Opcode Kin

-.fteback

FC Address
Exceptions
Cause

f/ EPC
Kill F Kill D Kill E Asynchronous
Stage Stage Stage Interrupts

Key observation: architected state only change in memory
and register write stages.

e
>

®
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Out-of-order Exceptions

m Example:
LD R3, O(R2)
DADD R1, R2, R6

m DADD may get an instruction page fault (IF), prior to:
m LD may get a data page fault (MEM)

m Solution:
m Post all exceptions in status vector of each instruction
m Carry status vector with instruction thru each stage
m |If set, turn of all “writes” to Reg/Mem

m Between MEM/WB, check vector and handle all exceptions in order of
instruction issue

Floating Point Operations

m Obviously, there are many advantages to a pipeline whose
instructions are equally lengthened ( )

® branch schemes with minimal stalls
m Data hazards not frequent and not severe (e.g., 1 stall for load)

m restricted forms of structural hazards
m Floating point operations often either require
m additional clock cycles to complete
m or elaborate and expensive hardware logic
m or slower clock cycles
m We now introduce floating point operations to MIPS

m these operations will take more than 1 EX cycle

m what effects will these instructions have on the pipeline?

20



New: EX stages

m  EX Integer Unit

® same as before, handles

most Integer ALU

operations

m computes effective address
(load/store, branch)
m Instruction moves
through this stage in 1

cycle

m  EX FP/integer multiply
m perform FP and integer *

m EXFP adder

m perform FP +, -, conversion

m EXFP/integer divider
m perform FP and int /

New: EX Stages

The FP ADD unit takes 4 cycles
The FP Mult unit takes 7 cycles
The FP Div unit takes 25 cycles

We can accommodate several operations in the EX stage at the same time

Functional Unit |Latency |Initiation Interval
Integer ALU 0 1

Data Memory 1 1

FP Add 3 1

FP/Int Multiply 6 1

FP/Int Divide/Sqrt 24 25

Integer uril

|Ex

We pipeline the FP Adder and FP Multiply units to provide overlap in their execution, but not the FP
divider since divisions are fairly rare

.

Frinfeger mufiply
we fl ms ] (me
-
FP adder

AZ A3 A
[ - |:

FFYinteger divider

2

fui

=

=

o
I

Latency = time between FU result
being produced and when an
instruction can use it

Latency determines number of stalls
required if the next instruction needs
result for this instruction’s EX stage

e |nitiation Interval =
number of cycles
required between

issuing 2 of the
same type of

instruction

e Divider has an interval
> 1 since it is not
pipelined




EP'Operations

: long execution time
Also, pipeline FP execution unit may initiate
new instructions without waiting full latency
 Reality: MIPS R4000
FP Instruction Latency Initiation Interval (MIPS R4000)
Add, Subtract 4 3
Multiply 8 4
Divide 36 35
Negate 2 il
Absolute value 2 1
Cycles before Cycles before issuing
using result instr of the same type

More on Latency/Initiation: Int

m We can have many overlapped instructions of the same type
in process
m Due to the pipelines in most of the EX stages, we can have some
combination of 1 int operation, 4 FP adds, 7 multiplies and 1 divide in
execution simultaneously
m Also, because instructions now vary in length from 5 cycles to
29 cycles (Divide), we can have “out of order” completion of
instructions
m Mult: 11 cycles, Add: 8 cycles

MUL.D FO,F1,F2 |IF 1D M{ M2 M3 M4 M5 M6 M7 MEM WB
ADD.D F3, F4, F5 IF ID Al A2 A3 A4 MEM WB

L.D F6, 0(R1) IF 1D EX MEM WB

F7, 0(R2) IF ID EX MEM WB




Structural Hazards with this Pipeline

m Since FP Divide is not pipelined

m it presents a structural hazard

m if there is more than divide instruction within 25 instructions, we have to
stall the second division and all succeeding instructions

m Number of register writes at a time is restricted to 1 because
there is only one register write port

m but since FP operations are of differing lengths, we might have more
than 1 instruction reach the WB stage at a time presenting a new
structural hazard

Other Problems with this Pipeline

m WAW hazards are now possible

MULD FO,F1,F2 IF ID M1 M2 M3 M4 M5 M6 M7* MEM WB
ADD.D  FO, F3, F4 IF 1D Al A2 A3 A4 MEM WB

m WAW hazards still unlikely since they won’t naturally occur

m Why would the ADD.D instruction overwrite register FO without first having
used the initial result from the MUL.D instruction?

m Nevertheless, in the floating point pipeline, WAW hazards can arise

m There will still be no WAR hazards since all reads are in the ID stage
which is always executed second in all instructions
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Increased RAW' Hazards Freguency.

m Stalls for RAW hazards will be more frequent

m because some of the EX tasks have a latency greater than 0

m and the EX stage often produces results that are read by a succeeding
instruction

m Therefore, we need additional hazard detection logic in the ID
stage

m We need to either have better compiler scheduling to reduce the
increase in stalls, or live with poorer efficiency

Example of a Stall in the EP pipeline

L.D F3,0R2) IF ID EX MEM WB
MUL.D  Fo, F3, F6 IF ID stal M M2 M3 M4 M5 M6 M7 MEM WB
ADD.D  F2, F0, F8 IF  stall ID stall stall stall stall stall stal A1 A2 A3 A4 MEM WB
S.D F2, 0(R2) IF  stall stall stall stall stall stall ID EX stall stall MEM WB

Stalls are needed here to prevent RAW hazards and structural
hazards
m F3 becomes available at the beginning of clock cycle 5 instead of clock

cycle 4, stalling stage M1 in MUL.D and all succeeding instructions by 1
clock cycle

® MUL.D has latency of 6 so ADD.D does not get the value for FO for an
additional 6 cycles stalling ADD.D and S.D by 6 cycles

m ADD.D has latency of 2 before S.D causing 2 more stalls

m Structural hazard arises between ADD.D and S.D as they both reach MEM
and WB simultaneously

m S.D should have 1 more stall to prevent this structural hazard
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Another Example

MUL.D FO, F1,F2 |IF 1D

int op IF ID EX MEM WB

int op IF 1D EX MEM WB

ADD.D F2, F3, F4 IF ID Al A2 A3 A4 MEM WB
int op IF ID EX MEM WB

int op IF 1D EX MEM WB

L.D F2, 0(R2) IF ID EX MEM WB

m In Cycle 11 we have a structural hazard
m 3 instructions all want to write during their WB stages
m thereis only 1 register write port
m the latter 2 instructions will stall by 1 and 2 cycles

m Another problem is that ADD.D and L.D both write to the same
register

m If L.D were to start 1 cycle earlier, we would have a WAW hazard (L.D
writes before ADD.D writes)

Handling WAW: Hazards

m A WAW hazard will only arise if one instruction writes to
the same place that a prior instruction(s) will write to later
m This is rare and unusual

m it may arise in scheduling a branch delay

m To handle this we might:

m Stall the latter instruction which is finishing first so that it writes
in the proper order

m Disable the writing ability of the instruction starting first but
finishing last

m essentially making it a no-op
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WAW. Example

m Consider the following code where the DIV.D instruction
has been moved up to the branch delay slot from fall
through position:

BNEZ R1, m
DIV.D FO, F1, F2

m: L.D FO, n

m DIV.D is executed whether branch is taken or not

m If branch is taken, then L.D appears after DIV.D in pipeline, but DIV.D
takes much longer so L.D writes first, then DIV.D overwrites it later

m DIV.D can be ignored (turned into no-op) once the WAW hazard is
detected though

Enhancing Control for EP Hazard

m Inthe ID stage:

m Check for structural hazards

m stall any instruction which
m uses a functional unit (divide) already in use
m will reach the MEM stage or WB stage at the same time as an instruction already in
the pipeline
m Check for RAW hazards by comparing the instruction’s registers with all
current instructions destination registers
m if match, stall current instruction

m Check for WAW hazards by determining if any instruction in the FP EX has
the same destination register as new instruction, if so, stall new instruction
in 1D before issuing
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R4000 Performance

m  Not ideal CPI of 1:
m |Load stalls (1 or 2 clock cycles)
m Branch stalls (2 cycles + unfilled slots)
] : RAW data hazard (latency)
m FP structural stalls: Not enough FP hardware (parallelism)

45 1
4 1
35 71
3
25 T
o AL
1.5
1
0.5
0

B FP structural
stalls

W Load stalls I Branch stalis O FP result stalls

Infosessions

m Graphics card technology
m Common operations
m GPU architecture
m Can be used instead of CPU for certain calculations?

m MMX instruction set

m Purpose

m SIMD concept

m Applications & benchmarks
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