CDA 5106 Advanced Computer Architecture 1

Module 1 | Fundamentals of Computer Design

Textbook

- .
- m The required text for the course:

John L. Hennessy and David A. Patterson, Computer
Architecture - A Quantitative Approach, 4th Edition, Morgan
Kaufmann Publishers Inc., 2006, ISBN: 0-12-370490-1

m A reference text:

John P. Shen and Mikko H. Lipasti, Modern Processor Design:
Fundamentals of Superscalar Processors, McGrawHill, ISBN:
0-07-057064-7

Course Overview

f.. m Prerequisite: CDA 4150/EEL 4768: Introduction to
: Computer Architecture/Computer System Design

m Credits: 3

m Semester: Spring 2009

m Schedule: Tue Thu 4:30pm - 5:45pm
m Room: HEC 0111

Instructor: Dr. Oleg Kachirski (okachirski@yahoo.com)

At a Glance

Objective: to present in detail how modern computer
systems work and are built.

Topics on architecture and organization of modern computing
systems: CPU design, instruction sets, superscalar
processors and multiprocessors.

Emphasis: pipelining, instruction level parallelism, thread-
level parallelism, memory hierarchies, input/output,
and network-oriented interconnections.




Information Sources

m Textbook material
m Class Notes (Adopted from Prof. David Patterson)

m Current research papers

m In-class ‘infosessions’ (submit via e-mail or USB flash)

m Class website:
http://www.eecs.ucf.edu/courses/cda5106/spr2009/

m The Internet

Ask questions by e-mail

Computer Design Trends
Design Characteristics
Instruction Set Architecture
Design Trends

Power Trends

Cost Trends

Grading

m Homework assignments: 15%
m In-class Infosessions: 5%

m Mid-term Exam: 25%

m Project/Presentation: 25%

m Final Exam (cumulative): 30%

Crossroads: Uniprocessor Performance

From Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th
edition, October, 2006 2%/year
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* VAX: 25%/year 1978 to 1986
¢ RISC + x86: 52%/year 1986 to 2002
* RISC + x86: < 20%/year 2002 to present




Computer Design Facts (Old and New)

Old: Power is free, transistors expensive
m New: “Power wall” - Power expensive, transistors cheap

m Old: Sufficiently increasing ILP via compilers, innovation (Out-of-
order, speculation, VLIW, ...)

m New: “ILP wall” - law of diminishing returns on more HW for ILP
m Old: Multiplies are slow, Memory access is fast

m New: “Memory wall” - Memory slow, multiplies fast
(120 clock cycles to DRAM memory, 4 clocks for multiply)

m Old: Uniprocessor performance 2X / 1.5 yrs
m New: Power Wall + ILP Wall + Memory Wall = ?
m Uniprocessor performance now 2X / maybe 5 yrs
m Change in chip design: multiple “cores” (2x processors/chip in ~ 2 years)
m Simpler processors are more power efficient

Problems with Sea Change

m Algorithms, Programming Languages, Compilers, Operating
Systems, Architectures, Libraries ... not ready to supply Thread
Level Parallelism or Data Level Parallelism for 1000 CPUs / chip

m Architectures not ready for 1000 CPUs / chip

m Unlike Instruction Level Parallelism, cannot be solved by just by
computer architects and compiler writers alone, but also cannot be
solved without participation of computer architects

m The 4th Edition of textbook (Computer Architecture: A
Quantitative Approach) explores shift from Instruction Level
Parallelism to Thread Level Parallelism / Data Level Parallelism

Déja vu all over again?

Multiprocessors imminent in 1970s, ‘80s, ‘90s, ...

m “..today’s processors ... are nearing an impasse as technologies
approach the speed of light..”

David Mitchell, The Transputer: The Time Is Now (1989)

m Transputer was premature
= Custom multiprocessors strove to lead uniprocessors
=> Procrastination rewarded: 2X seq. perf. / 1.5 years

m “We are dedicating all of our future product development to multicore
designs. ... This is a sea change in computing”

Paul Otellini, President, Intel (2004)

m Difference is all microprocessor companies switch to multiprocessors
(AMD, Intel, IBM, Sun)

=> Procrastination penalized: 2X sequential perf. / 5 yrs

= Biggest programming challenge: 1 to 2 CPUs

Design Characteristics

Depends on an application

Different computer classes => different design goals
Flexibility, general performance and affordability
Low power usage and compact size

High performance and availability

Future upgradeability

Maximum compatibility

Special purpose applications




Server Availability Effects

Annual losses (millions of 5) with downtime of

Cost of downtime per 1% 0.5% 0.1%
Application hour (thousands of §) (87.6 hrs/yr) (42.8 hrs/yr) (8.8 hrs/yr)
Brokerage operations J6450 $365 $283 $36.5
Credit card anthorization $2600 §228 fl14 228
Package shipping services $150 $13 $6.6 $1.3
Home shopping channcl §113 $9.9 $4.9 $1.0
Cataloy sales cenler 390 $7.9 $3.9 $0.8
Airline reservation center $89 $1.9 $3.9 OB
Cellnlar service activation 541 §36 fiR $04
Online network fees 425 $22 §1.1 $0.2
ATM service fees $14 $1.2 £0.6 $0.1

Instruction Set Architecture Dimensions

“... the attributes of a [computing] system as seen by the programmer, i.e. the
conceptual structure and functional behavior, as distinct from the organization
of the data flows and controls the logic design, and the physical
implementation.” — Amdabhl, Blaauw, and Brooks, 1964

m Organization of Programmable Storage

m Data Types & Data Structures: Encodings & Representations
m |nstruction Formats

m Instruction (or Operation Code) Set

m Modes of Addressing and Accessing Data Items and
Instructions

m Exceptional Conditions

ISA: Critical Interface

software

hardware

Properties of a good abstraction

m Lasts through many generations (portability)

m Used in many different ways (generality)

m Provides convenient functionality to higher levels
m Permits an efficient implementation at lower levels

Example ISA: MIPS

Programmable storage
o 2732 x bytes

. 31 x 32-bit GPRs (R0=0)
r31 32 x 32-bit FP regs (paired DP)
PCcC—1 HI, LO, PC

Arithmetic logical
Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU,
Addl, AddIU, SLTI, SLTIU, Andl, Orl, Xorl, LUI
SLL, SRL, SRA, SLLV, SRLV, SRAV

Memory Access
LB, LBU, LH, LHU, LW, LWL,LWR
SB, SH, SW, SWL, SWR

Control 32-bit instructions on word boundary
J, JAL, JR, JALR

BEq, BNE, BLEZ,BGTZ,BLTZ,BGEZ,BLTZAL,BGEZAL




ISA vs. Computer Architecture

m Old definition of computer architecture = instruction set design
m Other aspects of computer design called implementation
m Insinuates implementation is uninteresting or less challenging

m Computer architecture >> ISA

m Architect’s job is much more than instruction set design;
technical hurdles today more challenging than those in IS design

Moore’s Law:

Transistors
Per Die

1
0% #1965 Actual Data

W MOS Arrays 4 MOS Logic 1975 Actual Data
1975 Projection
Memory

A Microprocessor

m “Cramming More Components onto Integrated Circuits”
m Gordon Moore, Electronics, 1965
m # on transistors / cost-effective integrated circuit double every N months (12 < N < 24)
19

Comp. Arch. is an Integrated Approach

m What really matters is the functioning of the
complete system

m hardware, runtime system, compiler, operating system, and
application

m In networking, this is called the “End to End argument”

m Computer architecture is not just about transistors,
individual instructions, or particular implementations

m E.g., Original RISC projects replaced complex instructions
with a compiler + simple instructions

Tracking Technology Performance Trends

m Drill down into 4 technologies:
m Disks
a Memory
m Network
m Processors
m Compare ~1980 Archaic vs. ~2000 Modern
m Performance Milestones in each technology
m Compare Bandwidth vs. Latency improvements in
performance over time
®m Bandwidth: number of events per unit time
m E.g., Mbits/sec over network, MB/sec from disk
m Latency: elapsed time for a single event

m E.g., one-way network delay in microseconds,
average disk access time in milliseconds




Latency Lags Bandwidth (last ~20 years)

m Processor: ‘286, ‘386, ‘486,

Pentium, Pentium Pro, Pentium 4
(21x,2250x)

Processor

m Ethernet: 10Mb, 100Mb, 1000Mb,
10000 Mb/s (16x,1000x)

m Memory Module: 16bit plain
DRAM, Page Mode DRAM, 32b,
64b, SDRAM, DDR SDRAM (4x,120x)

m Disk : 3600, 5400, 7200, 10000,

(Latency improvement
= Bandwidth improvement) 15000 RPM (8x,143x]

1 10 100
Relative Latency Improvement

6 Reasons Latency Lags Bandwidth (cont’d)

2. Distance limits latency

m  Size of DRAM block => long bit and word lines => most of
DRAM access time

m  Speed of light and computers on network
m 1. & 2. explains linear latency vs. square BW

3. Bandwidth easier to sell (“bigger=better”)

m  E.g., 10 Gbits/s Ethernet (“10 Gig”) vs. 10 msec latency
Ethernet

4400 MB/s DIMM (“PC4400”) vs. 50 ns latency
Even if just marketing, customers now trained

Since bandwidth sells, more resources thrown at bandwidth,

which further tips the balance ”

6 Reasons Latency Lags Bandwidth

1. Moore’s Law helps BW more than latency

m  Faster transistors, more transistors,
more pins help Bandwidth

®  MPU Transistors: 0.130vs. 42 M xtors (300X)
m  DRAM Transistors:  0.064 vs. 256 M xtors (4000X)
m  MPU Pins: 68 vs. 423 pins (6X)
m  DRAM Pins: 16 vs. 66 pins (4X)

m  Smaller, faster transistors but communicate
over (relatively) longer lines: limits latency

m  Feature size: 1.5 to 3 vs. 0.18 micron (8X,17X)
m  MPU Die Size: 35 vs. 204 mm?  (ratio sqrt = 2X)
m  DRAM Die Size: 47 vs.217 mm?  (ratiosqrt = 2X)22

6 Reasons Latency Lags Bandwidth (cont’d)

4. Latency helps BW, but not vice versa

m  Spinning disk faster improves both bandwidth and
rotational latency

m 3600 RPM = 15000 RPM = 4.2X
m  Average rotational latency: 8.3 ms = 2.0 ms
m  Things being equal, also helps BW by 4.2X

m  Lower DRAM latency
More access/second (higher bandwidth)

m  Higher linear density helps disk BW
(and capacity), but not disk Latency

m 9,550 BPI = 533,000 BPI = 60X in BW




6 Reasons Latency Lags Bandwidth (cont’d)

5. Bandwidth hurts latency
m  Queues help Bandwidth, hurt Latency (Queuing Theory)

m  Adding chips to widen a memory module increases
Bandwidth but higher fan-out on address lines may
increase Latency

6. Operating System overhead hurts
Latency more than Bandwidth

m  Long messages amortize overhead;
overhead bigger part of short messages

Define and quantify power (1 / 2)

m For CMOS chips, traditional dominant energy consumption
has been in switching transistors, called dynamic power

Poweramanic =1/ 2x CapacitiveLoad xVoltage' « FrequencySwitched

m For mobile devices, energy is a better metric
Energyamanic - CapacitiveLoad xVoltage'

m For a fixed task, slowing clock rate (frequency switched)
reduces power, but not energy

m Capacitive load a function of number of transistors
connected to output and technology, which determines
capacitance of wires and transistors

m Dropping voltage helps both, so went from 5V to 1V

m To save energy & dynamic power, most CPUs now turn off

clock of inactive modules (e.g. Fl. Pt. Unit)

Summary of Technology Trends

m For disk, LAN, memory, and microprocessor, bandwidth
improves by square of latency improvement
m Bandwidth doubles, latency improves by no more than 1.2X to 1.4X
m Lag probably even larger in real systems, as bandwidth gains
multiplied by replicated components
m Multiple processors in a cluster or even in a chip
m Multiple disks in a disk array
m Multiple memory modules in a large memory
m Simultaneous communication in switched LAN
m HW and SW developers should innovate assuming Latency Lags
Bandwidth
m If everything improves at the same rate, then nothing really changes

m When rates vary, require real innovation

Example of quantifying power

m Suppose 15% reduction in voltage results in a 15%
reduction in frequency. What is impact on dynamic
power?

Poweramanic = 1/ 2x CapacitiveLoad ~Voltage' x FrequencySwitched
=1/2x.85xCapacitiveLoad x (.85xVoltage)’ x FrequencySwitched
= (.85)’x OldPower asnanic

= (0.6 x OldPower dynamic




Define and quantify power (2 / 2)

m Because leakage current flows even when a
transistor is off, now static power important too

Powersiaic = Currentsaic xVoltage
m Leakage current increases in processors with
smaller transistor sizes

m Increasing the number of transistors increases
power even if they are turned off

m In 2006, goal for leakage was 25% of total power
consumption; high performance designs at 40%

m Very low power systems even gate voltage to
inactive modules to control loss due to leakage

Die Yield

m Empirical
m Based on fabrication process & experience

DieYield = WaferYield x (1 N DefectsPerUnitAreax DleAreaj

a

m Wafer yield assumed 100%
m a=4.0(as of 2006)

Cost Trends

|
|
m Amdahl’s Law
|
[

Impacted by R&D costs, time, volume, competition
IC costs — most variance

DieCost +TestingCost +PackagingCost

ICCost = : .
FinalTestYield
O Al — WaferCost
DiesPerWafer X DieYield
DiesPerWafer = WaferArea WaferCircumference

DieArea DieDiagonalSize

Continue with Module 1
Processor performance

Benchmarking
Principle of Locality




Infosessions (Lecture 1)

m Processor fabrication
m Why wafers are made round?

® What is 90nm/65nm/45nm fabrication process?

m “Green Computing” primer
m Eco-friendly materials
m Power consumption
m Virtualization technology

m CPU overclocking
m CPU multiplier / FSB speed; example
m Memory latency; cooling

In This Lecture (Lecture 2)

m Dependability, MTTF

Measuring Performance
Principle of Locality

| |
]
m Amdahl’s Law
m Performance vs. Price-Performance
]

Fallacies & Pitfalls in Computer Design

Review

Computer Design Trends
Design Characteristics
Instruction Set Architecture
Design Trends
Power Trends
Cost Trends

Define and Quantify Dependability

How decide when a system is operating properly?

m Infrastructure providers now offer Service Level
Agreements (SLA) to guarantee that their networking or
power service would be dependable

m Systems alternate between 2 states of service with respect
to an SLA:

1. Service accomplishment, where the service is delivered
as specified in SLA

2. Service interruption, where the delivered service is
different from the SLA

m Failure = transition from state 1 to state 2
Restoration = transition from state 2 to state 1




Define and Quantity Dependability

m  Module reliability = measure of continuous service
accomplishment (or time to failure).
2 metrics

1. Mean Time To Failure (MTTF) measures Reliability

2. Failures In Time (FIT) = 1/MTTF, the rate of failures

Traditionally reported as failures per billion hours of operation

m  Mean Time To Repair (MTTR) measures Service Interruption
m  Mean Time Between Failures (MTBF) = MTTF+MTTR

m  Module availability measures service as alternate between
the 2 states of accomplishment and interruption (number
between 0 and 1, e.g. 0.9)

Module availability = MTTF / ( MTTF + MTTR)

Measuring Performance

m Benchmarking various components of a computer
m Summarizing performance as a score

il Performance,

Performance,

m Desktop Benchmarks

m FLOPS, MIPS, Graphics subsystem
m SPEC 2006

m Server Benchmarks

m Transactions, throughput
m TPC

Example Calculating Reliability

If modules have exponentially distributed lifetimes (age of
module does not affect probability of failure), overall failure
rate is the sum of failure rates of the modules

m Calculate FIT and MTTF for 10 disks (1M hour MTTF per disk),
1 disk controller (0.5M hour MTTF), and 1 power supply (0.2M
hour MTTF):

FailureRate =10x(1/1,000,000) +1/500,000 +1/200,000
=10+2+5/1,000,000
=17/1,000,000
=17,000FIT
MTTF=1,000,000,000/17,000
= 59,000hours

Summarizing Performance Results

m SPECRatio - geometric mean of scores:

GeometricMean = n/ H sample, = exp(lx an In(sample ))
i=1 n =

Z (In(sample,) — In(GeometricMean))*

i=l

GeometricStDey = exp
n

m GeometricStDev shows lognormal distribution compatibility

10



Computer Architecture Realm

Other fields often borrow ideas from architecture

Quantitative Principles of Design
1. Take Advantage of Parallelism
2. Principle of Locality
3. Focus on the Common Case
4. Amdahl’s Law
5. The Processor Performance Equation
m Careful, quantitative comparisons
m Define, quantity, and summarize relative performance
m Define and quantity relative cost
m Define and quantity dependability
m Define and quantity power
m  Culture of anticipating and exploiting advances in
technology
m  Culture of well-defined interfaces that are carefully
implemented and thoroughly checked

Pipelined Instruction Execution

Time (clock cycles)

Cycle 1:Cycle 2 éCycIe 3§Cycle 4§Cycle 5 éCycIe 6:Cycle 7
&
| R H R
s
f H H H H
r. rreren] ] » |.§ omen| {1 #es |
o ¢ ! :
r Feet o >3HH
e H F 2
’ R

m Simultaneously dispatch multiple instructions to

Taking Advantage of Parallelism

Increasing throughput of server computer via multiple processors or
multiple disks
m Detailed HW design

m Carry lookahead adders uses parallelism to speed up computing sums from
linear to logarithmic in number of bits per operand

m Multiple memory banks searched in parallel in set-associative caches

m Pipelining: overlap instruction execution to reduce the total time to
complete an instruction sequence.
m Not every instruction depends on immediate predecessor = executing
instructions completely/partially in parallel possible
m Classic 5-stage pipeline:
1) Instruction Fetch (Ifetch),
2) Register Read (Reg),
3) Execute (ALU),
4) Data Memory Access (Dmem),
5) Register Write (Reg)

Superscalar Processors

redundant functional units on the processor

11



Limits to Pipelining

its designated clock cycle
different things at once

still in the pipeline

m Hazards prevent next instruction from executing during

m Structural hazards: attempt to use the same hardware to do two

m Data hazards: Instruction depends on result of prior instruction

m Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow

(branches and jumps).

SaQYQ
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omm——

p— Levels of the Memory Hierarchy

Access Time
Cost
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The Principle of Locality

m The Principle of Locality:

m Program access a relatively small portion of the address
space at any instant of time.

m Two Different Types of Locality:

m Temporal Locality (Locality in Time): If an item is
referenced, it will tend to be referenced again soon (e.g.,
loops, reuse)

m Spatial Locality (Locality in Space): If an item is referenced,
items whose addresses are close by tend to be referenced
soon (e.g., straight-line code, array access)

Focus on the Common Case

Common sense guides computer design
m Since its engineering, common sense is valuable
m In making a design trade-off, favor the frequent case over
the infrequent case

m E.g., Instruction fetch and decode unit used more frequently than
multiplier, so optimize it 1st
m E.g, If database server has 50 disks / processor, storage
dependability dominates system dependability, so optimize it 1st
m Frequent case is often simpler and can be done faster than
the infrequent case

m E.g., overflow is rare when adding 2 numbers, so improve
performance by optimizing more common case of no overflow
m May slow down overflow, but overall performance improved by
optimizing for the normal case
m What is frequent case and how much performance
improved by making case faster => Amdahl’s Law

m Last 30 years, HW relied on locality for memory perf.

12



Amdahl’s Law

Fraction
ExTime,,, = ExTime,q4X|(1- Fraction e
new old |:( enhanced ) Speedup, phanced
ExTime 4 1

speed"‘povemll = B

ExTimemw Frac'ﬁonenhnm:ed

(1- Fraction,phgnceq) +
speedupenhanced

Best you could ever hope to do:

1
(1 - Fraction, nanced)

T — T

Speeduppaximum

Processor Performance Equation

CPUtime = CPUClockCycles
ClockRate
CPJ = CPUClockCycles

IC

CPUClockCycles = z IC,xCPI,

i=1

Amdahl’s Law Example

m New CPU 10X faster
m |/O bound server, so 60% time waiting for 1/0

1

Speedup overall —

: Fraction
(1 B FraCthl'l enhanced )+ ciezd
Speedup enhanced
1 1
= = 1,56

(1—04)+ %% 0.64
10

m Apparently, its human nature to be attracted by

10X faster, vs. keeping in perspective its just 1.6X

faster

Processor Performance Equation

inst count Cycle fime
CPUtime = Seconds = Instructions x Cycles x Seconds

Program Program Instruction  Cycle
Inst Count CPI Clock Rate
Program X
Compiler X (X)
Inst. Set. X X
Organization X X
Technology

13



Key Points

m Choose features to optimize accurately

|
- ®m Reproduce every component for fault tolerance

m Cost-effective design accounts for all system
components

m Compare “apples to apples” when benchmarking
m Beware of marketing definitions (e.g., MFFT)

Infosessions

m FPGA Technology
m Architecture
m Applications
m Programming/HDL

m Cloud Computing

m Concepts

m Compare with SaaS?

m Example (Amazon EC2)

14



