CDA 5106 Advanced Computer Architecture 1

Module 3b | Instruction-Level Parallelism Continued

In This Module

m ILP refresher
m Loop Unrolling

m Branch Prediction

Instruction-Level Parallelism

m Pipelining commonly used since 1985 to overlap the execution &
improve performance — since instructions evaluated in parallel,
known as

m Extending pipelining ideas by increasing the amount of
parallelism exploited among instructions

m Limitation imposed by data & control hazards; the ability of the
processor to exploit parallelism

Two main approaches

m Two largely separable approaches to exploiting ILP:
m Dynamic techniques depend upon hardware to locate parallelism
m Static techniques rely much more on software

m Practical implementations typically involve a mix or some
crossover of these approaches

[- hardware-intensive approaches dominate the
desktop and server markets; examples include Pentium, Power
PC, and Alpha

[- compiler-intensive approaches have seen broader
adoption in the embedded market, except, for example, IA-64
and ltanium

Questions this raises:

m What are the features of programs & processors that limit the
amount of parallelism that can be exploited among instructions?

m How are programs mapped to hardware?

m Will a program property limit performance? If so, how?

Recall from Pipelining Review

m Pipeline CPI = Ideal pipeline CPI + Structural Stalls + Data
Hazard Stalls + Control Stalls

] : measure of the maximum performance attainable
by the implementation

m Structural hazards: HW cannot support this combination of
instructions

m Data hazards: Instruction depends on result of prior instruction still in
the pipeline

m Control hazards: Caused by delay between the fetching of instructions
and decisions about changes in control flow (branches and jumps)

m In order to increase (IPC) we need to pay
increasing attention to dealing with stalls

Ideas to Reduce Stalls

Technique Reduces

Dynamic scheduling Data hazard stalls

Dynamic branch prediction Control stalls

Issuing multiple instructions per cycle Ideal CPI

Speculation Data and control stalls

Dynamic memory disambiguation Data hazard stalls involving memory
Loop unrolling Control hazard stalls

Basic compiler pipeline scheduling Data hazard stalls

Compiler dependence analysis Ideal CPI and data hazard stalls
Software pipelining and trace scheduling Ideal CPI and data hazard stalls
Compiler speculation Ideal CPI, data and control stalls

First limits on exploiting ILP

m The amount of parallelism available within a — a straight-line code
sequence with no branches in or out except to the entry and from the exit —
is quite small

m Typical dynamic branch frequency is often between 15% and 25% — between
4 and 7 instructions execute between branch pairs — these instructions are
likely to depend upon each other, and thus the overlap we can exploit within
a basic block is typically less than the average block size

m To obtain substantial performance enhancements, we must exploit ILP across
multiple basic blocks

Example — Loop Unrolling

m This code, add a scalar to a vector:
for (i=1000; i>0; i=i-1)
x[1] = x[1] + s;
m Assume following latencies for all examples
m Ignore delayed branch in these examples

Instruction Instruction Latency stalls between
producing result using result in cycles in cycles

FP ALU op Another FP ALU op 4

FP ALU op Store double 3

Load double FP ALU op 1

Load double Store double 1

Integer op Integer op 1

FP Loop: Where are the Hazards?

First translate into MIPS code:

m -To simplify, assume 8 is lowest address

Loop: L.D FO, 0 (R1) ;FO0=vector element
ADD.D F4,F0,F2 ;add scalar from F2
S.D 0(R1),F4 ; Store result
DADDUI R1,R1,-8 ;decrement pointer 8B (DW)

BNEZ R1, Loop ;branch R1l!=zero

FP Loop Showing Stalls

1 Loop: L.D F0,0(R1l) ;FO=vector element

2 stall

3 ADD.D F4,F0,F2 ;add scalar in F2

4 stall

5 stall

6 S.D 0(R1),F4 ;store result

7 DADDUI R1,R1,-8 ;decrement pointer 8B (DW)

8 stall ;assumes can’t forward to branch

9 BNEZ Rl,Loop ;branch Rl!=zero
Instruction Instruction stalls b/n in
producing result using result clock cycles
FP ALU op Another FP ALUop 3
FP ALU op Store double 2
Load double FP ALU op 1

m 9 clock cycles: Rewrite code to minimize stalls?

Scheduled FP Loop Minimizing Stalls

1 F0,0 (R1)
2 DADDUI R1,R1,-8
3 ADD.D F4,F0,F2
4
5
6

stall

stall

S.D 8(R1l) ,F4 ;altered offset when move DSUBUI
7 BNEZ R1, Loop

Swap DADDUI and S.D by changing address of S.D

Instruction Instruction stalls b/n in
producing result using result clock cycles
FP ALU op Another FP ALUop 3

FP ALU op Store double 2

Load double FP ALU op 1

7 clock cycles, but just 3 for execution (L.D, ADD.D,S.D), 4 for loop overhead;
How to make faster?

Unroll Loop Four Times

(straightforward way)

1 cycle stall :

1 Loop:L.D F0,0(R1) 4/ 2 c:/lcles stall Rew.n?e |_°°p i
3 ADD.D F4, FO Fz/ minimize stalls?
6 S.D 0(R1l) ,F4 ;drop DSUBUI & BNEZ
7 L.D F6,-8(R1)
9 ADD.D F8,F6,F2
12 S.D -8 (R1) ,F8 ;drop DSUBUI & BNEZ
13 L.D F10,-16 (R1)
15 ADD.D F12,F10,F2
18 S.D -16(R1) ,F12 ;drop DSUBUI & BNEZ
19 L.D F14,-24 (R1)
21 ADD.D F16,F14,F2
24 S.D —-24(R1) ,F16
25 DADDUI R1,R1, #-32 ;alter to 4*8
27 BNEZ R1,LOOP

27 clock cycles, or 6.75 per iteration

(Assumes R1 is multiple of 4)

Unrolled Loop Detail

Do not usually know upper bound of loop

- m Suppose itis n, and we would like to unroll the loop to make k
copies of the body

m Instead of a single unrolled loop, we generate a pair of
consecutive loops:

m 1st executes (n mod k) times and has a body that is the original loop

m 2nd is the unrolled body surrounded by an outer loop that iterates (n/k)
times

m For large values of n, most of the execution time will be spent
in the unrolled loop

Unrolled Loop Scheduling That Minimizes Stalls

1 Loop:L.D FO0,0(R1)

2 L.D F6,-8 (R1)

3 L.D F10,-16(R1)

4 L.D F14,-24 (R1)

5 ADD.D F4,F0,F2

6 ADD.D F8,F6,F2

7 ADD.D F12,F10,F2

8 ADD.D F16,F14,F2

9 S.D 0(R1),F4

10 S.D -8(R1),F8

11 S.D -16(R1),F12
12 DSUBUI R1,R1, #32

13 S.D 8(R1),F16 ; 8-32 = -24
14 BNEZ R1,LOOP

14 clock cycles, or 3.5 per iteration

5 Loop Unrolling Decisions

Requires understanding how one instruction depends on another and how the
instructions can be changed or reordered given the dependences:

1. Determine loop unrolling useful by finding that loop iterations were
independent (except for maintenance code)

2. Use different registers to avoid unnecessary constraints forced by using
same registers for different computations

3. Eliminate the extra test and branch instructions and adjust the loop
termination and iteration code

4. Determine that loads and stores in unrolled loop can be interchanged by
observing that loads and stores from different iterations are independent

» Transformation requires analyzing memory addresses and finding that they do
not refer to the same address

5. Schedule the code, preserving any dependences needed to yield the same
result as the original code

3 Limits to Loop Unrolling

Decrease in amount of overhead amortized with each extra
unrolling

o Amdahl’s Law
2. Growth in code size
« For larger loops, concern it increases the instruction cache miss rate

3. Register pressure: potential shortfall in registers created by
aggressive unrolling and scheduling

« If not be possible to allocate all live values to registers, may lose some
or all of its advantage

m Loop unrolling reduces impact of branches on pipeline;
another way is branch prediction

Static Branch Prediction

Lecture 3 showed scheduling code around delayed branch

. m To reorder code around branches, need to predict branch statically
when compile

m Simplest scheme is to predict a branch as taken

m Average misprediction = untaken branch frequency = 34% SPEC

25% & ppoy
2 20% |

More accurate = .

scheme predicts -% 15% 1

branches using B 10% -

profile information 5

collected from é’ 5% ~

earlier runs, and .

modify prediction 0% -

based on last run: & Q(\\o% & s S ¢ &o@é s &

oo&d“) © o

Integer Floating Point

Dynamic Branch Prediction

Why does prediction work?
m Underlying algorithm has regularities
m Data that is being operated on has regularities

m Instruction sequence has redundancies that are artifacts of way that
humans/compilers think about problems

m Is dynamic branch prediction better than static branch
prediction?

m Seems to be

m There are a small number of important branches in programs which
have dynamic behavior

Dynamic Branch Prediction

m Performance = f(accuracy, cost of misprediction)

m Branch History Table: Lower bits of PC address index table of
1-bit values

m Says whether or not branch taken last time

m No address check

m Problem: in a loop, 1-bit BHT will cause two mispredictions
(avg is 9 iterations before exit):

m End of loop case, when it exits instead of looping as before

m First time through loop on next time through code, when it predicts
exit instead of looping

10

Dynamic Branch Prediction

m Solution: 2-bit scheme where change prediction only if

mispredict twice
T

Predict Taken
T NT

Predict Not
Taken

Predict Taken

Predict Not
Taken

NT

m Red: stop, not taken

m Green: go, taken

m Adds hysteresis to decision making process

BHT Accuracy

m Mispredict because either:
m Wrong guess for that branch
m Got branch history of wrong branch when index the table with lower 4 bits
m 4096 entry table:

20% —18% — - - RN _ _ __ U S
18% +
16% +
14% + Bl - 1295 ——— -~ - -
12% +| [----- 0% <= - — == A R
10% - - --- e R
aop | EEEEE RO L o L R
6% | - 7 - Sl e
i N--B-8-0-B-0B-0-------
0,

Misprediction Rate

Integer Floating Point

11

Correlated Branch Prediction

Idea: record m most recently executed branches as taken or not
taken, and use that pattern to select the proper n-bit branch
history table

m In general, (m,n) predictor means record last m branches to
select between 2™ history tables, each with n-bit counters

m Thus, old 2-bit BHT is a (0,2) predictor

m Global Branch History: m-bit shift register keeping T/NT status
of last m branches.

Each entry in table has m n-bit predictors.

Correlating Branches

(2,2) predictor Branch address

— Behavior of recent 4
branches selects 2-bits per branch predictor
between four
predictions of next
branch, updating just BN Picdin

that prediction

2-bit global branch history

Accuracy of Different Schemes

1o 4096 Entries 2-bit BHT
16% Unlimited Entries 2-bit BHT
14% 1024 Entries (2,2) BHT

12%
10%
8%
6%

4%

2%
0%

Frequency of Mispredictions

gcc

=
3
g

matrix300
tomcatv
doducd
spice
fpppp
expresso
eqntott

B 4,096 entries: 2-bits per entry B Unlimited entries: 2-bits/entry ® 1,024 entries (2,2) |

Tournament Predictors

m Multilevel branch predictor

m Use n-bit saturating counter to choose between
predictors

m Usual choice between global and local predictors

m 0/0, 0/1, 111

g - g -
. . -~ ~

(/ Use predictor 1 ((Use predictor 2

Ai oA

Y on .
g X
Use predictor 1 (Use predictor 2
-\
1/0
A\ /4 \\ /*
fer N

13

Tournament Predictors

Tournament predictor using, say, 4K 2-bit counters indexed by
local branch address. Chooses between:

m Global predictor
m 4K entries index by history of last 12 branches (212=4K)

m Each entry is a standard 2-bit predictor

m Local predictor

m Local history table: 1024 10-bit entries recording last 10 branches,
index by branch address

m The pattern of the last 10 occurrences of that particular branch
used to index table of 1K entries with 3-bit saturating counters

Comparing Predictors

m Advantage of tournament predictor is ability to select the
right predictor for a particular branch

m Particularly crucial for integer benchmarks.

m A typical tournament predictor will select the global predictor
almost 40% of the time for the SPEC integer benchmarks and less
than 15% of the time for the SPEC FP benchmarks

Ea

Y e - ;o

Lot 1-b i etk

e Dbk T b LY

S pmEkinsrate P————
w "'\-L_‘_‘_____

— -
Todpmamaen P ki

TH o 1 35 38 46 AW &m 5u

Pentium 4 Misprediction Rate

(per 1000 instructions, not per branch)

wl 2o — | [CE =~6% misprediction rate per branch SPECint
(19% of INT instructions are branch)

+ N B B =2% misprediction rate branch SPECfp
ons are branch)

Branch mispredictions per 1000 Instructions

N & < o & > S &
&+ SPE€int2000 ~SPEEIp2g00
X

Branch Target Buffers (BTB)

Branch target calculation is costly and stalls the instruction
fetch.

m BTB stores PCs the same way as caches
m The PCof a branch is sent to the BTB

® When a match is found the corresponding Predicted PC is
returned

m If the branch was predicted taken, instruction fetch continues
at the returned predicted PC

15

Branch Target Buffers Operation

PC of instruction to fetch
Look up Predicted PC
Number of
entries
in branch-
target
buffer
No: instruction is
not predicted to be Branch
branch; proceed normally predicted
taken or
Yes: then instruction is branch and predicted untaken

PC should be used as the next PC

Dynamic Branch Prediction Summary

m Prediction becoming important part of execution

m Branch History Table: 2 bits for loop accuracy
m Correlation: Recently executed branches correlated with next
branch
m Either different branches
m Or different executions of same branches

m Tournament predictors take insight to next level, by using multiple
predictors

m usually one based on global information and one based on local
information, and combining them with a selector

m In 2006, tournament predictors using = 30K bits are in processors like
the Power5 and Pentium 4

m Branch Target Buffer: include branch address & prediction

Infosessions

m Carry look-ahead adders (again?)

17

