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Module 4 | Limits of ILP

Review from Last Time

Interest in multiple-issue - to improve performance without
affecting uniprocessor programming model

m Taking advantage of ILP is conceptually simple, but design
problems are complex in practice

m Conservative in ideas, just faster clock and bigger cache

m Processors of last 7 years (Pentium 4, IBM Power 5, AMD
Opteron) have the same basic structure and similar sustained
issue rates (3 to 4 instructions per clock) as the 1st
dynamically scheduled, multiple-issue processors announced
in 1995

m Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many
renaming registers, and 2X as many load-store units
= performance 8 to 16X

Peak v. delivered performance gap increasing




Outline

Review
m Limits to ILP (another perspective)

m Thread Level Parallelism

m Multithreading

m Simultaneous Multithreading

m Power 4 vs. Power 5

m Head to Head: VLIW vs. Superscalar vs. SMT

Conclusion

Limits to ILP

m Conflicting studies of amount

m Benchmarks (vectorized Fortran FP vs. integer C programs)
m Hardware sophistication
m Compiler sophistication

m How much ILP is available using existing mechanisms with
increasing HW budgets?

m Do we need to invent new HW/SW mechanisms to keep on
processor performance curve?
m Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
Intel SSE2: 128 bit, including 2 64-bit FP per clock
Motorola AltaVec: 128 bit ints and FPs

Supersparc Multimedia ops, etc.




Overcoming Limits

m Advances in compiler technology + significantly new and
different hardware techniques may be able to overcome
limitations assumed in studies

m However, such advances when coupled with realistic hardware
will unlikely overcome these limits in near future

Limits to ILP

Initial HW Model here; MIPS compilers.

Assumptions for ideal/perfect machine to start:

1. Register renaming — infinite virtual registers
=> all register WAW & WAR hazards are avoided

2. Branch prediction — perfect; no mispredictions

3. Jump prediction — all jumps perfectly predicted (returns, case statements)
2 & 3 = no control dependencies; perfect speculation & an unbounded
buffer of instructions available

4. Memory-address alias analysis — addresses known & a load can be moved
before a store provided addresses not equal; 1&4 eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions (FP *,/);
unlimited instructions issued/clock cycle;




Limits to ILP HW Model comparison

Model Power 5

Instructions Issued per Infinite 4

clock

Instruction Window Size Infinite 200

Renaming Registers Infinite 88 integer +
88 FP

Branch Prediction Perfect 2% to 6% misprediction
(Tournament Branch
Predictor)

Cache Perfect 64KI, 32KD, 1.92MB L2, 36
MB L3

Memory Alias Analysis Perfect ?7?

Upper Limit to ILP: Ideal Machine

160 +

140 +

120

100

80 -

60

40

Instructions Per Clock

20

gce espresso

Integer: 18 - 60

150.1
FP: 75 - 150

118.7

fpppp doducd tomcatv

Programs




Limits to ILP HW Model comparison: Window

New Model Model Power 5

Instructions Infinite Infinite 4

Issued per clock

Instruction Infinite, 2K, 512, Infinite 200

Window Size 128, 32

Renaming Infinite Infinite 88 integer +

Registers 88 FP

Branch Perfect Perfect 2% to 6% misprediction
Prediction

(Tournament Predictor)

Cache Perfect Perfect 64KI, 32KD, 1.92MB L2,
36 MB L3

Memory Alias Perfect Perfect ??

More Realistic HW: Window Impact
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Limits to ILP HW Model comparison: Branch

New Model Model Power 5

Instructions 64 Infinite 4

Issued/clock

Instruction 2048 Infinite 200

Window Size

Renaming Infinite Infinite 88 integer +

Registers 88 FP

Branch Perfect vs. 8K Perfect 2% to 6% misprediction
Prediction Tournament vs.

(Tournament Branch

512 2-bit vs. profile Predictor)
VS. hone
Cache Perfect Perfect 64KI, 32KD, 1.92MB L2,
36 MB L3
Memory Alias | Perfect Perfect ??

More Realistic HW: Branch Impact

FP: 15 - 45

_ Change from Infinite window to
examine to 2048 and maximum
issue of 64 instructions per
clock cycle
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2
©
o
c
o
o
2
f:
o
o)
=

1%1 %0%

doduc fpppp l espresso

| Profile-based ® 2-bit counter m Tournament

Limits to ILP HW Model comparison: Registers

New Model |Model |Power5
Instructions Issued | 64 Infinite 4
per clock
Instruction Window | 2048 Infinite 200
Size
Renaming Registers | Infinite v. 256, Infinite 88 integer +
128, 64, 32, none 88 FP
Branch Prediction 8K 2-bit Perfect Tournament Branch
Predictor
Cache Perfect Perfect 64KI, 32KD, 1.92MB
L2,36 MB L3
Memory Alias Perfect Perfect Perfect




More Realistic HW:

Renaming Register Impact (N int + N fp)
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Limits to ILP HW Model comparison: Memory

Inspect v. none

New Model |[Model |Power5
Instructions 64 Infinite 4
Issued per clock
Instruction 2048 Infinite 200
Window Size
Renaming 256 Int + 256 FP Infinite 88 integer +
Registers 88 FP
Branch 8K 2-bit Perfect Tournament
Prediction
Cache Perfect Perfect 64KI, 32KD, 1.92MB L2,

36 MB L3

Memory Alias | Perfect v. Stack v. | Perfect Perfect




More Realistic HW:
Memory Address Alias Impact

Change 2048 instr FP: 4 - 45
window, 64 instr issue, 8K (Fortran, no heap)
2 level Prediction, 256 ==

45 45
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Global/Stack perf; Inspec.

Perfect heap conflicts Assem.

None

Reference — Memory Allocation in C++

Stack:

- local variables (variables declared inside a function) are put on the stack -
unless they are also declared as 'static' or 'register’

- function parameters are allocated on the stack

- local variables that are declared on the stack are not automatically
initialized by the system so they usually have garbage until you set them

- variables on the stack disappear when the function exits (thus, if a function
is called multiple times, it's local variables and parameters are recreated and
destroyed each time the function is called end exited).

m Heap:
- declared variables (as opposed to dynamically created ie new, malloc) are
created on the heap before program execution begins, they exist the entire
life of the program (although scope may prevent access to them - they still
exist) and they are initialized to all zeros

- global variables are on the heap

- static local variables are on the heap (this is how they keep their value
between function calls)

- memory allocated by new, malloc and calloc are on the heap




Limits to ILP HW Model comparison

New Model Model

Instructions Issued | 64 (no restrictions) Infinite 4

per clock

Instruction Infinite vs. 256, 128, Infinite 200

Window Size 64, 32

Renaming 64 Int + 64 FP Infinite 88 integer +

Registers 88 FP

Branch Prediction | 1K 2-bit Perfect Tournament

Cache Perfect Perfect 64KI, 32KD, 1.92MB
L2,36 MB L3

Memory Alias HW disambiguation Perfect Perfect

Realistic HW: Window Impact

[ Perfect disambiguation (HW),
1K Selective Prediction, 16
entry return, 64 registers,
issue as many as window
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How to Exceed ILP Limits of this study?

These are not laws of physics; just practical limits for today,
and perhaps may be overcome via research

m Compiler and ISA advances could change results

m WAR and WAW hazards through memory: eliminated WAW
and WAR hazards through register renaming, but not in
memory usage

m Can get conflicts via allocation of stack frames as a called procedure
reuses the memory addresses of a previous frame on the stack

Speculate through multiple branches?

HW vs. SW to increase ILP

m Memory disambiguation: HW best

m Speculation:

m HW best when dynamic branch prediction better than
compile time prediction

m Exceptions easier for HW
m HW doesn’t need bookkeeping code or compensation code
m Very complicated to get right

m Scheduling: SW can look ahead to schedule better

m Compiler independence: does not require new compiler,
recompilation to run well
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Performance beyond single thread ILP

There can be much higher natural parallelism in some
applications (e.g., Database or Scientific code)

m Explicit Thread Level Parallelism or Data Level Parallelism

m Thread: process with own instructions and data

m Thread may be a process part of a parallel program of multiple
processes, or it may be an independent program

m Each thread has all the state (instructions, data, PC, register state,
and so on) necessary to allow it to execute

m Data Level Parallelism: Perform identical operations on
data, and lots of data

Thread Level Parallelism (TLP)

ILP exploits implicit parallel operations within a loop or
straight-line code segment

m  TLP explicitly represented by the use of multiple threads of
execution that are inherently parallel

m  Goal: Use multiple instruction streams to improve
1. Throughput of computers that run many programs
2. Execution time of multi-threaded programs

TLP could be more cost-effective to exploit than ILP
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New Approach: Multithreaded Execution

m Multithreading: multiple threads to share the functional units
of 1 processor via overlapping

m processor must duplicate independent state of each thread e.g., a
separate copy of register file, a separate PC, and for running
independent programs, a separate page table

m memory shared through the virtual memory mechanisms, which
already support multiple processes

m HW for fast thread switch; much faster than full process switch = 100s
to 1000s of clocks

m When to switch?
m Alternate instruction per thread (fine grain)

m When a thread is stalled, perhaps for a cache miss, another thread can
be executed (coarse grain)

Fine-Grained Multithreading

Switches between threads on each instruction, causing the
execution of multiples threads to be interleaved

m Usually done in a round-robin fashion, skipping any stalled
threads

m CPU must be able to switch threads every clock

m Advantage is it can hide both short and long stalls, since
instructions from other threads executed when one thread stalls

m Disadvantage is it slows down execution of individual threads,
since a thread ready to execute without stalls will be delayed by
instructions from other threads

Used on Sun’s Niagara
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Course-Grained Multithreading

Switches threads only on costly stalls, such as L2 cache misses

m Advantages
m Relieves need to have very fast thread-switching

m Doesn’t slow down thread, since instructions from other threads issued
only when the thread encounters a costly stall

m Disadvantage is hard to overcome throughput losses from
shorter stalls, due to pipeline start-up costs

m Since CPU issues instructions from 1 thread, when a stall occurs, the
pipeline must be emptied or frozen

m New thread must fill pipeline before instructions can complete
m Because of this start-up overhead, coarse-grained

multithreading is better for reducing penalty of high cost stalls,
where pipeline refill << stall time

Used in IBM AS/400

For most apps, most execution units lie idle

For an 8-way superscalar.
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Do both ILP and TLP?

TLP and ILP exploit two different kinds of parallel structure in a
program
m Could a processor oriented at ILP to exploit TLP?

m functional units are often idle in data path designed for ILP because of
either stalls or dependences in the code

m Could the TLP be used as a source of independent instructions
that might keep the processor busy during stalls?

m Could TLP be used to employ the functional units that would
otherwise lie idle when insufficient ILP exists?

Simultaneous Multithreading

One thread, 8 units Two threads, 8 units
Cycle M M FX FX FP FP BRCC Cycle M M FX FX FP FP BRCC

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes
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Simultaneous Multithreading (SMT)

Simultaneous multithreading (SMT): insight that dynamically
scheduled processor already has many HW mechanisms to
support multithreading

m Large set of virtual registers that can be used to hold the register sets of
independent threads

m Register renaming provides unique register identifiers, so instructions from
multiple threads can be mixed in datapath without confusing sources and
destinations across threads

m Out-of-order completion allows the threads to execute out of order, and
get better utilization of the HW

m Just adding a per thread renaming table and keeping separate PCs

m Independent commitment can be supported by logically keeping a separate
reorder buffer for each thread

Multithreaded Categories
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Design Challenges in SMT

Since SMT makes sense only with fine-grained
implementation, impact of fine-grained scheduling on single
thread performance?

m A preferred thread approach sacrifices neither throughput nor
single-thread performance?

m Unfortunately, with a preferred thread, the processor is likely to
sacrifice some throughput, when preferred thread stalls

m Larger register file needed to hold multiple contexts

m Not affecting clock cycle time, especially in

® [nstruction issue - more candidate instructions need to be
considered

m Instruction completion - choosing which instructions to commit may
be challenging

m Ensuring that cache and TLB conflicts generated by SMT do
not degrade performance

Single-threaded predecessor to Power 5.
8 execution units in out-of-order engine,
each may issue an instruction each cycle.

Hranch redirects

Instruction crack and
group formation
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Changes in Power 5 to support SMT

Increased associativity of L1 instruction cache and the
instruction address translation buffers

m Added per thread load and store queues

m Increased size of the L2 (1.92 vs. 1.44 MB) and L3 caches

m Added separate instruction prefetch and buffering per thread
m Increased the number of virtual registers from 152 to 240

m Increased the size of several issue queues

m The Power5 core is about 24% larger than the Power4 core
because of the addition of SMT support

Initial Performance of SMT

Pentium 4 Extreme SMT yields 1.01 speedup for SPECint_rate
benchmark and 1.07 for SPECfp_rate
m Pentium 4 is dual threaded SMT

m SPECRate requires that each SPEC benchmark be run against a vendor-
selected number of copies of the same benchmark

m Running on Pentium 4 each of 26 SPEC benchmarks paired with
every other (262 runs) speed-ups from 0.90 to 1.58; average
was 1.20

m Power 5, 8 processor server 1.23 faster for SPECint_rate with
SMT, 1.16 faster for SPECfp_rate

m Power 5 running 2 copies of each app speedup between 0.89
and 1.41

m Most gained some

m FP apps had most cache conflicts and least gains
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Head to Head ILP competition

Processor Micro architecture Fetch / FU Clock | Transis- | Power
Issue / Rate tors /
Execute (GHz) | Die size
Intel Speculative dynamically 3/3/4 7 int. 3.8 125M | 115 W
Pentium 4 scheduled; deeply 1FP 122 mm?
Extreme pipelined; SMT
AMD Athlon | Speculative dynamically 3/3/4 6 int. 2.8 114M | 104 W
64 FX-57 scheduled 3FP 115 mm?
IBM Power5 | Speculative dynamically 8/4/8 6 int. 1.9 200 M 80W
(1 CPU only) scheduled; SMT; 2 FP 300 mm? | (est.)
2 CPU cores/chip (est.)
Intel Itanium Statically scheduled 6/5/11 9 int. 1.6 592 M | 130 W
2 VLIW-style 2 FP 423 mm?

Performance on SPECint2000
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Performance on SPECfp2000
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No Silver Bullet for ILP

No obvious over all leader in performance

m The AMD Athlon leads on SPECint performance followed by the
Pentium 4, Itanium 2, and Power5

m [tanium 2 and Power5, which perform similarly on SPECfp,
clearly dominate the Athlon and Pentium 4 on SPECfp

m [tanium 2 is the most inefficient processor both for FP and
integer code for all but one efficiency measure (SPECfp/Watt)

m Athlon and Pentium 4 both make good use of transistors and
area in terms of efficiency

m IBM Power5 is the most effective user of energy on SPECfp and
essentially tied on SPECint

Limits to ILP

m Doubling issue rates above today’s 3-6 instructions per clock,
say to 6 to 12 instructions, probably requires a processor to

m issue 3 or 4 data memory accesses per cycle,
m resolve 2 or 3 branches per cycle,

m rename and access more than 20 registers per cycle, and

fetch 12 to 24 instructions per cycle.

m The complexities of implementing these capabilities is likely to
mean sacrifices in the maximum clock rate

m E.g, widest issue processor is the Itanium 2, but it also has the slowest
clock rate, despite the fact that it consumes the most power!
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Limits to ILP

Most techniques for increasing performance increase power consumption

m  The key question is whether a technique is energy efficient: does it increase
power consumption faster than it increases performance?

m  Multiple issue processors techniques are all energy inefficient:

1. Issuing multiple instructions incurs some overhead in logic that grows
faster than the issue rate grows

2. Growing gap between peak issue rates and sustained performance

m  Number of transistors switching = f(peak issue rate), and performance =
f(sustained rate), growing gap between peak and sustained performance
= increasing energy per unit of performance

Commentary

Itanium architecture does not represent a significant
breakthrough in scaling ILP or in avoiding the problems of
complexity and power consumption

m Instead of pursuing more ILP, architects are increasingly focusing
on TLP implemented with single-chip multiprocessors

m In 2000, IBM announced the 1st commercial single-chip,
general-purpose multiprocessor, the Power4, which contains 2
Power3 processors and an integrated L2 cache

m Since then, Sun Microsystems, AMD, and Intel have switch to a focus on
single-chip multiprocessors rather than more aggressive uniprocessors.

m Right balance of ILP and TLP is unclear today

m Perhaps right choice for server market, which can exploit more TLP, may
differ from desktop, where single-thread performance may continue to be
a primary requirement
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Conclusion

Limits to ILP (power efficiency, compilers, dependencies ...)
seem to limit to 3 to 6 issue for practical options

m Explicitly parallel (Data level parallelism or Thread level
parallelism) is next step to performance

m Coarse grained vs. Fine grained multithreading
m Only on big stall vs. every clock cycle

m Simultaneous Multithreading if fine grained multithreading
based on out-of-order superscalar microarchitecture

m Instead of replicating registers, reuse rename registers
® [tanium/EPIC/VLIW is not a breakthrough in ILP

Balance of ILP and TLP decided in marketplace

m |IBM Power6 Processor:
® 65nm process, 341mm?2, 790 million transistors
m 4.7 GHz clock frequency, Dual-core design
m In-order design (out-of-orderliness sacrificed at MHz altar)
m “IBM's Power6 architecture goes down the Itanic route”
m |IBM Power7 Processor:
® Duein 2010
m 45nm process
m 4 GHz clock, Eight cores/chip, 4 threads/core
m Next Gen Itanium Processor:
m Code-named ‘Poulson’, due 2010 (follows Tukwila)
m 32nm process, 4+ cores/chip
m http://www.pcmag.com/article2/0,2817,2339629,00.asp
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Sales Numbers
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Fine-Grained Multithreading Example

m SUN Niagara:
- Single-issue, 1.2 GHz
6-stage pipeline
4-way multi-threaded

8 cores

32 threads on one chip

Fast crypto support
340 mm2 die size, 90 nm

50W power consumption




Datacenter in a Box
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“Just add water”

(and network and power)
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Infosessions

m ILP — Programmer’s perspective
m Existing compiler optimization switches (e.g., in gcc)
®m Programmer do’s and don'ts
m Best practices in manual code optimization

m Intel’s Larrabee architecture
m Purpose
m Timeline
m Compare with Cell processors

m 3D Chip Integration
m Stacking chips vertically

m Benefits, current technologies
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