CDA 5106 - Advanced Computer Architecture

Homework 2 (50 pts)

For all questions, use the following code and latencies (same as in HW2):

	LD	F2,0(Rx)	Latencies beyond single cycle	
Loop:			Memory LD	+4
I0:	DIVD	F8,F2,F0	Memory SD	+1
I1:	MULTD	F2,F6,F2	Integer ADD, SUB	+0
I2:	LD	F4,0(Ry)	Branches	+1
I3:	ADDD	F4,F0,F4	ADDD	+1
14:	ADDD	F10,F8,F2	MULTD	+5
I5:	ADDI	Rx,Rx,#8	DIVD	+12
I6:	ADDI	Ry, Ry, #8	20	
17:	SD	F4,0(Ry)		
18:	SUB	R20,R4,Rx		
19:	BNZ	R20,Loop		

Q1. (25 pts)

Unroll the loop twice in the above example and schedule the code for optimal execution (ignore structural hazards for now). Show your work. *Hint:* Make sure to take care of integer ops (ADDI etc). Use register renaming for all FP registers affected.

Q2. (25 pts)

Use the result from Q1. Assume you have the following hardware resources limited – only one LOAD/STORE unit and two FP Multiply units. All other resources are unlimited. Reschedule the code optimally to avoid the resulting structural hazards.