
CDA 4506
Design and Implementation of Data
Communication Networks

Lecture Notes 5
Dr. R. Lent

Network applications: some jargon

Process: program running within
a host.

n within same host, two
processes communicate using
interprocess communication
(defined by OS).

n processes running in different
hosts communicate with a
network protocol

user agent: interfaces with user
“above” and network
“below”.

n implements user interface &
application-level protocol

n Web: browser

n E-mail: mail reader

n streaming audio/video:
media player

FTP: the file transfer protocol

n transfer file to/from remote host
n client/server model

n client: side that initiates transfer (either to/from remote)
n server: remote host

n ftp: RFC 959
n ftp server: port 21

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

FTP: separate control, data connections

n FTP client contacts FTP server at
port 21, specifying TCP as
transport protocol

n Client obtains authorization over
control connection

n Client browses remote directory by
sending commands over control
connection.

n When server receives a command
for a file transfer, the server opens
a TCP data connection to client

n After transferring one file, server
closes connection.

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

n Server opens a second TCP data
connection to transfer another file.

n Control connection: “out of band”

n FTP server maintains “state”:
current directory, earlier
authentication

DNS: Domain Name System

Purpose: Map IP addresses and names

n distributed database implemented in hierarchy of many name

servers

n application-layer protocol host, routers, name servers to

communicate to resolve names (address/name translation)

n note: core Internet function, implemented as application-

layer protocol

n complexity at network’s “edge”

DNS name servers

no server has all name-to-IP address
mappings

local name servers:

n each ISP, company has local
(default) name server

n host DNS query first goes to
local name server

authoritative name server:

n for a host: stores that host’s IP
address, name

n can perform name/address
translation for that host’s name

Why not centralize DNS?

n single point of failure

n traffic volume

n distant centralized

database

n maintenance

doesn’t scale!

DNS: Root name servers

n contacted by local name server that can not resolve name
n root name server:

n contacts authoritative name server if name mapping not known
n gets mapping
n returns mapping to local name server

b USC-ISI Marina del Rey, CA
l ICANN Marina del Rey, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA

i NORDUnet Stockholm

k RIPE London

m WIDE Tokyo

a NSI Herndon, VA
c PSInet Herndon, VA
d U Maryland College Park, MD
g DISA Vienna, VA
h ARL Aberdeen, MD
j NSI (TBD) Herndon, VA

13 root name
servers worldwide

Simple DNS example

host surf.eurecom.fr
wants IP address of
gaia.cs.umass.edu

1. contacts its local DNS server,
dns.eurecom.fr

2. dns.eurecom.fr contacts

root name server, if
necessary

3. root name server contacts
authoritative name server,
dns.umass.edu, if
necessary requesting host

surf.eurecom.fr
gaia.cs.umass.edu

root name server

authorititive name server
dns.umass.edu

local name server
dns.eurecom.fr

1

2
3

4
5

6

DNS example

Root name server:

n may not know

authoritative name

server

n may know intermediate

name server: who to

contact to find

authoritative name

server
requesting host

surf.eurecom.fr

gaia.cs.umass.edu

root name server

local name server
dns.eurecom.fr

1

2
3

4 5

6

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

DNS: Iterated Queries

recursive query:
n puts burden of name

resolution on contacted
name server

n heavy load?

iterated query:
n contacted server replies

with name of server to
contact

n “I don’t know this name,
but ask this server”

requesting host
surf.eurecom.fr

gaia.cs.umass.edu

root name server

local name server
dns.eurecom.fr

1

2
3

4

5 6

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

iterated query

DNS: caching and updating records

n once (any) name server learns mapping, it caches mapping

n cache entries timeout (disappear) after some time

DNS records

DNS: distributed DB storing resource records (RR)

n Type=NS
n name is domain (e.g.

foo.com)
n value is IP address

of authoritative name
server for this domain

RR format: (name, value, type, ttl)

n Type=A
n name is hostname
n value is IP address

n Type=CNAME
n name is alias name for some

“cannonical” (the real) name
www.ibm.com is really

servereast.backup2.ibm.com
n value is cannonical name

n Type=MX
n value is name of mailserver

associated with name

DNS protocol, messages

DNS protocol : query and reply messages, both with same
message format

msg header
n identification: 16 bit # for

query, reply to query uses
same #

n flags:

n query or reply
n recursion desired
n recursion available
n reply is authoritative

DNS protocol, messages

Name, type fields
for a query

RRs in reponse
to query

records for
authoritative servers

additional “helpful”
info that may be used

Electronic Mail

Three major components:

n user agents

n mail servers

n simple mail transfer protocol:
SMTP

User Agent

n a.k.a. “mail reader”

n composing, editing, reading mail
messages

n e.g., Eudora, Outlook, elm,
Netscape Messenger

n outgoing, incoming messages
stored on server user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP
SMTP

Electronic Mail: mail servers

Mail Servers
n mailbox contains incoming

messages for user

n message queue of outgoing
(to be sent) mail messages

n SMTP protocol between mail
servers to send email
messages

n client: sending mail
server

n “server”: receiving mail
server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Electronic Mail: SMTP [RFC 2821]

n uses TCP to reliably transfer email message from client to

server, port 25

n direct transfer: sending server to receiving server

n three phases of transfer

n handshaking (greeting)

n transfer of messages

n closure

n command/response interaction

n commands: ASCII text

n response: status code and phrase

n messages must be in 7-bit ASCII

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message and “to”
bob@someschool.edu

2) Alice’s UA sends message to her
mail server; message placed in
message queue

3) Client side of SMTP opens TCP
connection with Bob’s mail
server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent to
read message

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

Sample SMTP interaction

S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

Try SMTP interaction for yourself:

n telnet servername 25
n see 220 reply from server
n enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands
above lets you send email without using email client

(reader)

SMTP: final words

n SMTP uses persistent
connections

n SMTP requires message
(header & body) to be in 7-
bit ASCII

n SMTP server uses
CRLF.CRLF to determine

end of message

Comparison with HTTP:

n HTTP: pull
n SMTP: push

n both have ASCII
command/response
interaction, status codes

n HTTP: each object
encapsulated in its own
response msg

n SMTP: multiple objects sent
in multipart msg

Mail message format

SMTP: protocol for exchanging
email msgs

RFC 822: standard for text
message format:

n header lines, e.g.,

n To:

n From:

n Subject:

different from SMTP
commands!

n body

n the “message”, ASCII
characters only

header

body

blank
line

Message format: multimedia extensions

n MIME: multimedia mail extension, RFC 2045, 2056
n additional lines in msg header declare MIME content type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

MIME types
Content-Type: type/subtype; parameters

Text
n example subtypes: plain,

html

Image
n example subtypes: jpeg,

gif

Audio
n exampe subtypes: basic (8-

bit mu-law encoded),
32kadpcm (32 kbps coding)

Video
n example subtypes: mpeg,

quicktime

Application
n other data that must be

processed by reader before
“viewable”

n example subtypes: msword,
octet-stream

Multipart Type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=StartOfNextPart

--StartOfNextPart
Dear Bob, Please find a picture of a crepe.
--StartOfNextPart
Content-Transfer-Encoding: base64
Content-Type: image/jpeg
base64 encoded data
.........................
......base64 encoded data
--StartOfNextPart
Do you want the reciple?

Mail access protocols

n SMTP: delivery/storage to receiver’s server

n Mail access protocol: retrieval from server
n POP: Post Office Protocol [RFC 1939]

n authorization (agent <-->server) and download

n IMAP: Internet Mail Access Protocol [RFC 1730]

n more features (more complex)

n manipulation of stored msgs on server

n HTTP: Hotmail , Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

POP3 protocol

authorization phase
n client commands:

n user: declare
username

n pass: password
n server responses

n +OK
n -ERR

transaction phase, client:
n list: list message numbers
n retr: retrieve message by

number
n dele: delete
n quit

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

POP3 (more) and IMAP

More about POP3
n Previous example uses

“download and delete”
mode.

n Bob cannot re-read e-
mail if he changes client

n “Download-and-keep”:
copies of messages on
different clients

n POP3 is stateless
across sessions

IMAP
n Keep all messages in

one place: the server
n Allows user to organize

messages in folders
n IMAP keeps user state

across sessions:
n names of folders and

mappings between
message IDs and
folder name

